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Preface

In the theory of motion of several coupled rigid bodies about a
fixed point one can distinguish three basic ramifications.

1. The first, the so-called classical direction of investigations, is
concerned with particular cases of integrability ot the equations of
motion of a single rigid body about a fixed point,! and with their geo-
metrical interpretation. This path of thought was predominant until
the beginning of the 20th century and its most illustrious represen-
tatives are L.EULER (1707—1783), J.L.LAGRANGE (1736—1813),
L. Poinsor (1777—1859), S. V. KOVALEVSKAYA (1850—1891), and
others. Chapter I of the present monograph intends to reflect this
branch of investigations.

For collateral reading on the general questions dealt with in this
chapter the reader is referred to the following textbooks and reports:
A. DomoGarov [1], F. KLEIN and A. SOMMERFELD [1;, 13, 15], A.G.
GREENHILL [10], A. GraY [1], R. GRAMMEL [4,], E. J. ROUTH [2;, 2.,
3., 3], J. B. ScarBOROUGH [1], and V. V. GoLUuBEV [1, 2].

Chapter IT is concerned with the motion of a symmetric as well
as an asymmetric self-excited rigid body. A body is said to be self-
excited if the torque applied is fixed in the body or moves in a pre-
scribed manner. Prior to the modern age of jet propulsion such a problem
seemed to lack a physical meaning. Today, however, various devices
with internal reactions are commonly used to influence rotational
motions: for example, devices for the steering of space vehicles. There-
fore the problem of motion of a self-excited rigid body about a fixed
point is now meaningful and important.

Chapter ITI considers the motion of an externally excited rigid
body. While the earlier literature on the motion of rigid bodies is
mainly concerned with torque-free and heavy bodies, in the more
recent literature several authors such as W.BRAUNBEK [1] and

1 Any rotating body having freedom in one or more planes at right angles
to the plane of rotation is called a gyro or gyroscope. A gyro having complete
freedom in three planes at right angles to each other is called a free gyro. Mechani-
cally complete freedom of a wheel in three planes can be realized by mounting
it in a system of gimbals. However, a rotating ball held in the air would also be
a gyroscope; in fact, the Earth itself is a gyroscope.
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R. WiEBELITZ [1] have discussed the motion of a rigid body subject
to periodic torque vectors. Such rotating bodies are of interest in
astronomy and atomic physics. In astronomy our main concern is
the perturbation of the Earth’s rotation about its axis under the influence
of forces arising from the planetary system (precession and nutation
of the Earth’s axis). For additional reading on this subject the reader
isreferred to a report by E. W. WooLARD [1] and papers by S. D. Poisson
[2]. In atomic physics electrons and nuclei in high frequency magnetic
fields represent atomic gyroscopes subject to periodic torques. In-
vestigations of this type have been stimulated by the necessity of
finding a mechanical model for the phenomenon of nuclear induc-
tion. For additional information see F.BrocH, W.W. HANSEN and
M. PackarDp [1], F.BrocH and A.SIEGERT [1], R. K. WANGSNESS
and F. BrocH [1], and F. KIRCHNER [1].

2. A turn in the direction of research took place in the second decade
of the present century when in 1909 the gyroscopic compass and in
1917 the gyro horizon and rate gyro (turn indicator) were constructed.
Since the above dates these instruments have been used for guidance
and control of ships and aircraft, and today for guidance and control
of missiles and spacecraft. As a consequence the applied theory of
gyroscopes came into existence and matured rapidly while the classical
theory receded into the past. Efforts were now made to investigate
the motion and stability of particular gyroscopic devices, to study
the effect of motion of the supporting member of such devices, the
effect of friction at the bearings and that of the flexibility of the rotor-
shaft, and so on. This was the beginning of the second ramification
in the general theory of the motion of coupled rigid bodies about a
fixed point. The most illustrious representatives of this path of thought
are L. FoucauLt (1819—1878), A. N. KryrLov (1863 —1945), M. Scuu-
LER (1882), R. GRAMMEL (1889—1964), C. S. DRAPER (1901), and others.

For additional reading we refer the reader to the following textbooks
and reports: E. S. FERrRY [1], R. GRAMMEL [4,], A. N. KryLov and
Yu. A. Krutrov [1], A. L. Rawrings [1], M. Davipson [1], K. I. T.
Ricuarpson [1], C.S. DrRarEr, W. WRIGLEY, and L. R. GROHE [1],
E. J. Srrrand C. L. EMMERICH [1], B. V. BuLcakov [3, 4], R. N. ARNOLD
and L. MAUNDER [1], P.SAveET [1], and H. Z1EGLER [2]. Part4 of
F. KLEIN and A. SOMMERFELD’s treatise [1] on technical applications
of the gyroscope is now rather out of date.

3. A third ramification in the theory of motion of coupled rigid
bodies about a fixed point was initiated by Lord KeLvIN (Sir William
TromsoN) and P. G. Tarr [1]. In the eighties of the last century they
were concerned with the classification of the various types of forces.
According to their terminology, forces which depend on the generalized
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velocities ¢y, and the work of which in any real infinitesimal displacement
of the system is equal to zero, are called gyroscopic forces. It should
be noted, however, that this term has a conditional meaning in the
sense that it applies to actual forces applied to the system as well
as to certain terms in the equations of motion which are liable to be
interpreted as forces. If the gyroscopic forces are denoted by g;x gx
(summation over k), then the matrix of the coefficients g;. (depending
upon the coordinates g,) must be skew-symmetric.

Linear terms with respect to the generalized velocities ¢, with a
skew-symmetric matrix appear, for example, in the nonlinear equations
of motion of systems containing gyroscopes as well as in the equations
of motion of holonomic systems with cyclical coordinates, or moving
subject to nonstationary constraints. Further, they appear in the
equations for the perturbations of systems subject to stationary con-
straints, and in the equations of motion of nonholonomic systems
in terms of quasi-coordinates. Hence a general theory of systems
moving subject to gyroscopic forces is of interest not only for gyro-
dynamics but also for various types of mechanical and electrical systems
containing no gyroscopes at all.

Investigating the -effect of gyroscopic forces on the motion of a
given system, it is sometimes convenient to assume that the gyro-
scopic forces depend on a certain parameter H. The introduction of
such a parameter H permits us to study the solutions of the equations
of motion as functions of this parameter, and to determine some proper-
ties of the system in terms of H. For large values of the parameter H
it is natural to raise the question concerning a possible simplification
of the equations of motion in order to make the integration easier.

The physical reason for introducing a parameter H is also obvious.
Namely, for large values of the velocity & of the proper rotation of
a gyroscope (in comparison with the velocities of precession 4 and
nutation ) H = Cn (Cn being the constant of integration corres-
ponding to the cyclic coordinate @ in the equations ot motion of a
gyroscope) is approximately equal to the modulusI of the angular

momentum I of the gyroscope, i.e. I ~ H = Cn, and the gyroscope
exhibits certain properties which do not occur for small values of d.
This simple example shows the necessity and desirability for investi-
gating gyroscopic systems in terms of a parameter.

It is also well known that in certain cases, discarding terms con-
taining second derivatives and products of first derivatives, equations
result which provide acceptable solutions for practical purposes. For
example, the equations of motion of a gyroscopic compass admit such
a simplification and the solution of the simplified equations describes
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with great accuracy the actual motion. In other cases, however, such
a simplitication of the differential equations of motion leads to com-
pletely unacceptable solutions. For example, the equations of motion
of the FOUCAULT gyroscope, being a system with two degrees of freedom,
do not admit such a simplification.

A book which summarizes the results obtained following the third
path of thought sketched above is that by D. R. MERKIN [1]. It also
contains certain general theorems due to its author concerning the
stability of the equilibrium of a system subject to gyroscopic forces
and the effect of gyroscopic forces on the motion of a nonconservative
system. Also of some practical importance are MERKIN’s investigations
concerning the conditions under which the equations of a fast rotating
gyroscope can be simplified in the sense explained above.

Concerning problems of gyroscopic stabilization the reader is referred
to I. I. METELICYN [1].

Two particular cases of several-body systems which are of great
practical importance are discussed in Chapters IV and V respectively,
namely the gyrostat and the gyroscope in a CARDAN suspension.

4. In connection with the investigation of the motion of the Earth’s
artificial satellites some old problems of classical celestial mechanics
and gyrodynamics became again actual and, in addition, new problems
arose. Such problems are, to name just a few:

(i) Separation of the general motion of mutually attracting rigid
bodies into translations of their mass centers and rotations about the
latter.

(ii) Rotation of an artificial satellite about its mass center.

(iii) Motion of a rigid body about a fixed point in a central NEw-
ToNian force field.

(iv) Motion of a rigid body with fluid-filled cavities about a fixed
point.

(v) Motion of a gyroscope with variable mass or moments of
inertia.

(vi) Application of gyroscopics to inertial guidance systems.

A rapidly expanding literature of the above problems exists today
which is already so extensive that a proper survey would be an under-
taking beyond the scope of this monograph. Therefore we shall limit
ourselves to the discussion of problem (iii) in Chapter VI and problems
(i) and (ii) in Chapter VII.

5. The time EULER spent in Berlin (1741—1766) was rich with
discoveries in the fields of celestial mechanics, mechanics of rigid
bodies and mechanics of fluids. Although EULER was concerned with
the dynamics of rigid bodies from the beginning of his scientific activities
his main results, which culminated in the now classical equations of
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motion of a rigid body about a fixed point, were obtained by him
only during the Berlin period of his life and published in the Mémoires
de 1’Académie Royale des Sciences et Belles-Lettres de Berlin, vols.
5—16 (1751—1767), the papers being written between 1749—1760.

In particular, in 1758 EULER developed the theory of moments of
inertia of a rigid body, proved the existence of three mutually orthogonal
axes, called the principal axes of inertia of the body, and obtained the
equations for the rotational motion of the body relative to the body-
fixed coordinate trihedral, the axes of which are directed along the
principal inertia axes of the body. The concept of the ellipsoid of inertia,
however, was introduced later by L. PoinsoT. The above papers of
1758 were published in 1765 together with his fundamental treatise
“Theoria Motus Corporum Solidorum seu Rigidorum”, of which the
10th and 15th chapters again contained the derivation of his equations.

My report [1] “On some recent advances in the dynamics of rigid
bodies and celestial mechanics” appeared in 1958. The present mono-
graph is an attempt not only to account for the present state of the
field which it covers but also of its growth during the last two hundred
years. Completeness of the monograph is not claimed.
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PARTI

Single rigid body

Chapter I

Heavy rigid body

A. General solution of the Euler and Poisson equations

§ 1. The Euler angles

1.1. Definition. According to a theorem of EULER [1] the general
displacement of a rigid body with one fixed point is a rotation about
some axis through this point. The position of a rigid body is completely
determined by locating a rectangular coordinate trihedral fixed in
the rigid body relative to a rectangular coordinate trihedral fixed in
space. If the fixed point is taken as a common origin of the body and
space trihedrals, then the orientation of the body in space can be de-
scribed in terms of the direction cosines of the body axes relative to
the space axes. Among the nine direction cosines only three are inde-
pendent. Therefore we must use some set of three independent functions
of the direction cosines to specify the position of the rigid body. A
number of such sets of independent variables have been described in
the literature, the most important and useful being the EULER [2]
angles.

Let O be a fixed point of a rigid body about which the rotation of
the body takes place, and let O X Y Z be a right-hand rectangular
trihedral fixed in space (Fig. 1). Let O x v z be a right-hand rectangular
trihedral fixed in the body and moving with it. Furthermore, let the
coordinate planes X O Y and x O y intersect along the line of nodes
O N which is perpendicular to the plane through the axes O Z and
0 z. Choose the orientation along O N in such a way that the trihedral
O N Z z is right-handed. Denote the angles Z0 z, X O N and N O x by
@, p, @ respectively. These are known as the EULER angles. The angle
O (0= O < 7) is called the angle of nutation, the angle ¢ (0=y < 27)

Springer Tracts, Vol. 7: Leimanis 1



2 Heavy rigid body

the angle of precession and the angle @ (0 < @ << 2z) the angle of
proper rotation. If the EULER angles @, y, @ are known as functions
of the time#, then the position of the trihedral O x y z with respect
to the trihedral O X Y Z is defined. In other words, the motion of the
rigid body about the fixed point is known.

1.2. The direction cosines of O x, O y, O z as functions of the
Euler angles. The trihedral O x y z, the position of which is defined
: by the EULER angles O,
p, @, can be derived from
the trihedral 0 X Y Z by
means of the following
three successive counter-
clockwise rotations: (i) a
rotation through the
angle y about the O Z-
axis, obtaining the tri-
hedral 0 X; Y, Z,;, the
0 X;-axis of which coin-
cides with the line of
nodes O N; (ii) a rotation
through the angle ©
about the O Xj-axis,
obtaining the trihedral
O %, v, 21, the O yj-axis
of which lies in the plane Z; O z; and makes the angle @ with the
O Y,-axis; (ili) a rotation through the angle @ about the O z-axis
until the O x;-axis coincides with the O x-axis and the O y;-axis with
the O y-axis.

The transition from coordinates fixed in the rigid body, x, ¥, z,
to coordinates fixed in space, X, Y, Z, can be accomplished by means
of an orthogonal matrix A with elements &;; (¢, 7 =1, 2, 3) connected
by six orthogonality conditions

z,=2 Z-=Z7

3 3
.Z;.Oéi’,‘(xik: i ke or _Zl‘zx,-,;ocki: ik (],k:1,2,3)
1= T=

where 8;; is the KRONECKER d-symbol, defined by

5jk:1(j:k), 5j/;=0(j:|=k)

The elements of the resulting transformation matrix A can be
obtained by writing the matrix as a triple product of the above three
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rotations, each of which has a relatively simple matrix form:

X cosy —sinyp O X
( Y | =| siny cosy O Yl) (1.1)
z 0 0 1)\ z,
X, 1 0 0 %
( Y, |=]0 cos® —sin® Y1 (1.2)
Zy 0 sin® cos© 21
% cos® —sin® 0 x
(yl =| sin® cos® 0 y (1.3)
2 0 0 1)\ z

Hence the transformation from body coordinates x, y, z to space
coordinates X, Y, Z is given by the formulas

X
Y
4

where

cosycos @ —cos O siny sin @, — cosysin@ — cos @ sinycos D,

sin @ sin @

X
=Aly (1.4)
2

sin @ siny

siny cos @ +cos @ cosyp sin®, —sinysin® + cos@ cosycosP, —sin@ cosy

sin ® cos @ cos @

(1.5)

The inverse transformation from space coordinates X, Y, Z to

body coordinates x, y, z is

x X
y|=41Y (1.6)
2 Z

where the matrix A1 is equal to the transpose A4’ of 4, i.e.

cosypcos® —cos O siny sin®,
A-1=| —cosysin® — cos O siny cosP,
sin @ siny

siny cos® + cos O cosysin P, sin O sin P
— siny sin® -+ cos O cosy cosP, sin @ cosP
—sin @ cosy cos®
(1:7)

1.3. The components of the angular velocity @ as functions of
the Euler angles. Consider two positions of the rigid body, deter-
mined by the EULER angles @, ¢, @ and O+dO,p+dy, ®+dD.
The increment 4@ corresponds to an infinitesimal rotation about
the line of nodes O N. Similarly dy and d @ correspond to infinitesimal
rotations about the axes O Z and O z respectively. Hence the components

1*
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of the angular velocity o along the axes O N, O Z and O z are o, P, &
respectively, and therefore

5=0n+9K+dk

- —>
where 72, K and k are the unit vectors along the axes O N, O Z and O z
respectively, and dots denote derivatives with respect to the time {.
The table given below is a convenient means of finding the components
of & with respect to the trihedrals Oxyz and 0 X Y Z.

Ox Oy Oz ox oYy 0z
@ P q 4 P Q R
ON 6 cos® —sin® 0 cosy siny O
0z B3y =0 g3 =10 ogz3=7y 0 o 1
0oz @ 0 0 1 Oy Opy g

By means of this table we find that
p= OcosD+ po
g= —0Osin® +$f
r= py +

and ) ]
P=0Ocosy + Do

Q:(“)sintp+<i)oc23
R = d)oc33+1j)

Substituting for &, 8, ¥, and &3, Xa3, Xg3 their expressions in terms
of the EULER angles [see matrix (1.5)], we obtain that

p= Ocos®D + psinOsin® l

g = —0 sin® + ¢ sin6 cos P (1.8)
y = 4§ cos O e @]
and ) )
P = 9 cosy + (D sin @ siny l
Q = O siny — P sin0O cosy (1.9)

R = & cosO +1,bl

§ 2. The Euler and Poisson equations of motion

2.1. The dynamical equations of Euler. According to the basic
equation of dynamics the derivative with respect to the time of the
angular momentum of a rigid body is equal to the moment of the external



