OXFORD APPLIED MATHEMATICS
AND COMPUTING SCIENCE SERIES

Parallel Algorithms and
Matrix Computation

JAGDISH J. MODI




Jagdish J. Modi
University of Cambridge

Parallel Algorithms and
Matrix Computation

CLAR™ ¥DON PRESS - OXFORD
1988



Oxford University Press, Walton Street, Oxford OX2 6DP

Oxford New York Toronto

Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland

and associated companies in
Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

© Jagdish J. Modi, 1988

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of Oxford University Press

This book is sold subject to the condition that it shall not, by way

of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated
without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition
including this condition being imposed on the subsequent purchaser
British Library Catatoguing: ur tabpication Data

Modi, Jagdish

Parallel algorithms and matrix

computation.

1. Computer systems. Parallel-processor

systems. Programming. Algorithms

1. Title IlI. Series

005.1

ISBN 0-19-859655-3

ISBN 0-19-859670-7 (pbk.)

Library of Congress Cataloging in Publication Data

Modi, Jagdish.

Parallel algorithms and matrix computation/Jagdish Modi.
(Oxford applied mathematics and computing science series )}
Bibliography. Includes index.

1. Parallel processing (Electronic computers) 2. Algorithms.
3. Matrices. 1. Title. II. Series.

QA76.5.M543 1988 004’.35—dc 19 88-9687

ISBN 0-19-859655-3
ISBN 0-19-859670-7 (pbk.)

Typeset in Northern Ireland by The Universities Press (Belfast) Ltd
Printed in Great Britain

at the University Printing House, Oxford

by David Stanford

Printer to the University



This book is dedicated with
affection and respect to my parents,
my sister, and my younger brother



Preface

The introduction of parallel computers some twenty years ago
both provided an opportunity and prompted a need to develop
parallel algorithms. In the process of this development, new
perspectives have opened up, and a general theory of parallel
algorithms, connecting certain established principles in logic and
mathematics, will undoubtedly emerge. The elaboration of
parallel methods has permitted not only more freedom of
expression in problem analysis, but more generally has stimu-
lated wide-ranging intellectual inquiry. Advanced applications,
including image processing, robotics, speech recognition, and
artificial intelligence, which have overtaken the capacity of the
older sequential machines, can expect to benefit from this
scientific impetus.

The purpose of this book is to bring together and further
articulate the fundamental concepts in parallel computing. I will
be focusing particularly on numerical linear algebra in view of its
primary importance to both industry and academic research. I
have divided the book into two parts. The first part (Chapters 1
to 3) discusses general principles and algorithmic techniques,
treating a number of examples, and contains the essentials of a
final-year undergraduate course in computer science or computa-
tional mathematics. This is complemented in Part 2 (Chapters
4 to 7) by a detailed exposition of some of the key areas of
application in linear algebra. While the first part of the book will
be of interest to a wide audience including those acquainted only
with serial computing, the second part will demand a level of
mathematical maturity typical of a graduate in mathematics,
physical sciences, or engineering.

The book is structured in the following way. Chapter 1
introduces the fundamentals of parallel computing. Here I
provide an up-to-date account of, inter alia, the classification of
parallel computers, the interplay between machine architecture
and algorithm design, performance measurement, and the classi-
fication of parallel algorithms. Chapter 2 puts the emphasis on
algorithmic design and the variety of newly discovered techniques



viii Preface

which fully exploit the features of parallel computers. Chapter 3
is devoted entirely to parallel sorting techniques, demonstrating
how parallelism may be incorporated into some already well-
established serial methods.

The remaining chapters concentrate on matrix computations.
The discussion of the solution of linear algebraic equations
(Chapter 4) is limited to a selection of methods designed to
illustrate research into the use of parallelism. In Chapter 5, the
Jacobi method for the symmetric eigenvalue problem is discussed
in detail. The remarkable stability of the orthogonal transforma-
tions, together with the simultaneous application of independent
plane rotations, leads to a consideration of these techniques in
other applications, notably QR factorization (Chapter 6) and
singular-value decomposition and the linear least-squares prob-
lem (Chapter 7).

Throughout the book, I have tended to stress the identification
of parallelism rather than its implementation on particular
architectures, though numerous results, especially in Part 2,
apply to the Distributed Array Processor (DAP).

It is a pleasure to acknowledge the assistance of many friends
and colleagues. I express my sincere thanks to Professors D. J.
Wheeler and D. Parkinson and Dr R. K. Livesley for providing
constructive criticism and invaluable guidance. I am grateful for
their detailed comments on specific chapters to Professors J. K.
lliffe, L. M. Delves, R. O. Davies, C. C. Paige, Drs J. S.
Rollett, P. M. Flanders, M. A. Sabin, and Mr S. J. Hammarling.

I am indebted to Drs H. R. Pratt and E. J. Primrose for
greatly enhancing my text, and to Mrs M. Ward for—with
immense patience—typing the manuscript. I would also like to
express my appreciation to the Oxford University Press, and in
particular to Mr J. Bentin, for their consistent co-operation. Last
but not least I would like to thank my parents, whose unfailing
generosity I can never hope to repay.

Cambridge JIM.
February 1988



Contents

PART 1 FUNDAMENTALS OF PARALLEL
COMPUTATION

General principles of parallel computing

1.1 Parallel computing, past and present

1.2 Classification of parallel computers

1.3 Single instruction multiple data (SIMD) architecture

1.4 Multiple instruction multiple data (MIMD) architecture

1.5 Networks for processor connectivity

1.6 Graphs

1.7 Some common networks

1.8 Symmetry, homogeneity, and embedding

1.9 Pipelining and vector processing

1.10 Algorithm performance measurement

1.11 Interplay: paraliel computers v. parallel algorithms v.
problem size

Parallel techniques and algorithms

2.1 Introduction

2.2 Elementary parallel operations

2.3 Matrix multiplication

2.4 Parallel evaluation of arithmetic expressions

2.5 Recursive doubling

2.6 Cyclic odd—even reduction

2.7 Bit-level algorithms

2.8 Bit-level algorithms for numerical functions

2.9 Slicing and crinkling

2.10 Parallel data transforms: a calculus of data organization

Parallel sorting algorithms

3.1 Introduction

3.2 Batcher’s bitonic sort

3.3 Bitonic sort using the perfect shuffle

3.4 Bubble sort and odd—even transposition sort
3.5 Treesort

3.6 Quicksort

86
90
92
96

100



Contents

3.7 Address sort 105
3.8 Complete parallel sorting schemes 106

PART 2 NUMERICAL LINEAR ALGEBRA

Solution of a system of linear algebraic equations

4.1 Introduction 113
4.2 Factorization techniques 115
4.3 Triangular systems of linear equations 124

4.4 Finite-difference solution of partialdifferential equations 129
4.5 Finite-element solution of partial differential equations 143

The symmetric eigenvalue problem: Jacobi method

5.1 Introduction 154
5.2 The classical method 155
5.3 Cyclic schemes 157
5.4 Simultaneous application of rotations 158
5.5 Kirkman’s schoolgirls’ problem 160
5.6 Design of parallel algorithms 161
5.7 Mobile schemes 164
5.8 Reduced cyclic schemes 168
5.9 Convergence properties 171
5.10 Approximate annihilation 174
5.11 A direct method for completing eigenproblem solutions 179
5.12 The generalized eigenvalue problem 189
QR factorization

6.1 Introduction 196
6.2 Givens sequences 197
6.3 The new scheme 198
6.4 Fibonacci schemes 202
6.5 Implementation on a parallel machine 204
6.6 Square-root-free Givens transformations 207
6.7 QR factorization via Householder reflections 210

Singular-value decomposition and related problems

7.1 Introduction 214
7.2 Singular-value decomposition 215
7.3 Singular-value decomposition via Jacobi rotations 216
7.4 The linear least-squares problem 223
7.5 The general Gauss—Markov linear model 227

7.6 The generalized linear least-squares problem 228



Contents X1

7.7 Generalized singular-value decomposition 229
7.8 Singular-value decomposition for a matrix product 233
7.9 The Kalman filtering problem 236
7.10 Eigensolutions via singular-value decomposition 239
Postscript 242
Bibliography 244

Index 255



Part 1

Fundamentals of Parallel Computation




AR, 7 B SE BEPDFIGE Ui M) : www. ertongbook. com



1 General principles of parallel computing

1.1 Parallel computing, past and present

The 1980s will go down in history as the decade in which parallel
computing first had a significant impact in the scientific and
commercial worlds. A substantial improvement in speed over
serial computation has already been secured, by up to a factor of
1000, for a number of major applications, but the scope for
further developments remains considerable. Machines are cur-
rently being built that exhibit an extensive degree of artificial
intelligence, and incorporate a significant amount of parallelism.
For example, the Connection Machine, based on learning
algorithms, has 65,536 intelligent memory cells capable of
communicating with other cells and thus representing a semantic
network. As technological sophistication increases, more com-
plex systems aimed at special-purpose applications such as the
processing of speech and natural language will undoubtedly
emerge. The concepts of both parallel computation and artificial
intelligence are, however, far from original, and date back to the
earliest developments in computing.

In an often-quoted statement, Lady Lovelace (1843), discuss-
ing Babbage’s machine, wrote that ‘The Analytical Engine has
no pretensions to originate anything. It can do whatever we know
how to order it to perform’ (her italics). But she was also well
aware that it can execute conditional instructions and therefore
adapt its own operation during the course of a calculation: ‘The
engine is capable, under certain circumstances, of feeling about
to discover which of two or more possible contingencies has
occurred, and of then shaping its future course accordingly.’
Menabrea (1842), in his Sketch of the Analytical Engine Invented
by Charles Babbage, stresses accuracy, rapidity, and the saving of
intellectual drudgery as the advantages of the machine. But
Turing (1950) pointed out that in fact ‘the Analytical Engine was



4 General principles of parallel computing

a universal digital computer’, and therefore with adequate
storage capacity and speed could mimic any machine, even a
hypothetical one that ‘thinks for itself’ (although, as he said:
‘Probably this argument did not occur to the Countess or to
Babbage’). In this celebrated paper Computing Machinery and
Intelligence, Turing essentially gives an affirmative answer to the
question: ‘Can machines think?’

In Menabrea’s report we also read that ‘when a long series of
identical computations is to be performed, such as those required
for the formation of numerical tables, the machine can be
brought into play so as to give several results at the same time,
which will greatly abridge the whole amount of the processes’. It
appears that Babbage was conscious of the basic speed advantage
parallelism can offer. But if the concept of parallelism is far from
novel, no more than a very limited amount—in the form of
instruction pipelining—was envisaged in the classical Von Neu-
mann concept of the serial computer and incorporated in the
earliest machines such as EDSAC 1 (1949) and UNIVAC (1951).
The application of parallelism at various levels (job level,
algorithm level, statement level, etc.) is comparatively recent.

Figure 1.1 shows the increase in arithmetic speed through the
development of serial computers since 1950. Improvements in
hardware have brought tremendous advances, for example the
successive replacement of vacuum-tube switches by transistors,
large-scale integrated circuits (LSI), very large-scale integrated
circuits (VLSI), and ultra large-scale integrated circuits (ULSI).
By the late 1970s, although the transmission of electronic signals
through wires had become so fast—almost approaching the speed
of light—this nonetheless proved to be the limiting factor
compared with electronic switch speed. Minimizing the length of
wire unfortunately heats up the switches, and consequently taxes
the physical limitations of thermal conductivity. The Cray-1
vector processor, which is discussed later, opted for small-scale
integration with an elaborate cooling system to prevent melt-
down. A twenty-fold speed-up every decade (Fig. 1.1) has thus
resulted primarily from progress in hardware technology and—to
a lesser extent—from slave processing, interleaving of memory,
and the incorporation of parallelism at lower levels.

With the increase in computing capability, certain large-scale
computational problems, especially those concerned with pre-



General principles of parallel computing 5

100G
Cray 34
106G s
s Cray 2
®Cragy X-MP
100M -
I1BM 3090
L ]
10M

.
1BM3084

100000F

Floating-point operations per sec

10000

1000

S UNIVAC 1
100 8EDSAC 1

1 ] L1 L 1 L 1 1
1950 1955 1960 1965 1970 1975 1980 1985 1930 1995

Fig. 1.1 Improvement in peak computer performance 1950-1995

dicting the behaviour of complicated physical systems by means
of mathematical modelling, began to approach feasibility, and
demands for even greater capacity became more pressing. In
fact, this state of affairs is self-perpetuating: more computing
power is always going to lead to the demand for yet more
computing power. At any given moment, the capabilities of
contemporary computers are inevitably one step behind the
perceived needs for scientific and technological applications.
While machines of the classical Von Neumann design, with
minor modifications, have thus been made very much faster, it
seems certain that, to obtain comparable improvements in speed
in the future, it will be necessary to incorporate a high degree of
parallelism. Speed improvement on serial machines is con-
strained by an inability to increase the transfer speeds of



6 General principles of parallel computing

operands to and from the data buffers and the functional units.
Particularly when lengthy repetitive calculations are required, the
cost associated with data transfer becomes considerable: main
storage devices currently in use, for instance, have access times
of 100-150nsec, and longer if accessed through a shared
highway, whereas typical modern processor times are of the
order of 50 nsec. The objective is therefore to strike an optimal
balance between processor speed and memory access rate.

One well-established method of improving processing speed,
by means of limited parallelism at assembler level, is to start each
operation before the previous one is completed. This approach,
known as pipelining, is discussed in detail in Section 1.9.
Machines like those of the Cray and Cyber series couple the
technique of pipelining with independent hardware units for
performing distinct operations such as addition and multiplica-
tion. These allow a greater number of simultaneous operations,
which in turn result in greater speed. The term vector processor
is commonly used to describe such a system.

In the 1980s, VLSI technologies have led to the development
of multiprocessors. High-speed buffers may be omitted entirely,
and a large number of processing units connected directly to the
memory banks. Memory is distributed among these processors,
with the possible inclusion of a global memory to which all units
have access; processor-interconnection schemes based on hyper-
cubes, rings, and lattices have also been designed (Section 1.7).
This concept is the basis of parallel processing. The single central
processing unit of the classical Von Neumann design is replaced
by many processors, which, even if individually somewhat
slower, accelerate the speed of processing by operating in
parallel. In terms of cost, an n-processing-unit paraliel system
costs much less than n times a single-unit system. These
developments in hardware design were motivated by the use of
semiconductor stores as memory components. Semiconductor
devices have the same physical and electrical properties as logical
devices, and it may be appropriate to consider the memory units
and processing units together as a single entity: the ‘active
memory array’ in the phrase coined by Iliffe (1982). A number of
parallel machines have been built that incorporate vector pro-
cessing, multiprocessing, or a combination of both. Figure 1.2
shows the three generations of supercomputers since the 1970s,



General principles of parallel computing 7

)

x FPS T/40000

Third generation
100G— supercomputers

%]
Q
o
- 106{
£
[
o
= x CRAY 2
g 16— * CYBER 205
[ x FUJITSY VP-200
L JLCRAY X-MP
& x CRAY 1 *
¢ 100M— X ILLIAC IV x oap
Second generation
supercomputers
10OM—
First generation
supercomputers
™ T l T
1970 1975 1980 19@5 1990

Year

Fig. 1.2 Generations of supercomputers since the 1970s. The figures
show approximate performance only, and strongly depend on the
particular application

in terms of peak performance measured in flops (floating-point
operations per second).

The innovation of parallel computing has also added a new
dimension to the design of algorithms and programs. Parallel
programming is not a simple extension of serial programming. In
order to exploit the possibilities offered by parallelism, program-
mers need to ‘think in parallel’ and reconsider the solution
process. Experience has shown that judgements of efficiency
based on serial techniques can easily be overturned in a parallel
environment (Section 1.10). Algorithms that are obsolete so far
as implementation on serial machines is concerned often show a
high degree of parallelism—i.e. contain numerous subcalcula-
tions that are independent of one another and may therefore be
executed simultaneously—and can outperform the best serial
techniques (for example, the Jacobi method for the eigenvalue
problem; see Chapter 5). But, in addition to demanding new



8 General principles of parallel computing

techniques of algorithm design, the introduction of extended
parallelism also requires us to rethink what we know about
systems, parallel languages, non-numerical problems, and nume-
rical methods in general.

This chapter is divided as follows. Initial sections provide
background concepts with an informal survey of possible ar-
chitectures and discuss Flynn’s classification of parallel compu-
ters. The introduction of parallelism into computer systems has
led to various architectures consisting of processing elements,
and the interconnections between them. To discuss the issues
related to transmission between individual processing elements
we need some formal algebra, which is provided by graph theory
(Section 1.6). We describe some commonly available networks
(Section 1.7), particularly with respect to symmetry, homoge-
neity and embedding (Section 1.8). Although a vector processor
does not constitute a truly parallel system, it nevertheless
provides a significant improvement in speed (Section 1.9). The
characteristics of parallel computers and parallel algorithms are
qualitatively different from those of serial computation, and
these issues are'dealt with in later sections. The second part of
the chapter thus provides a formal study, and leads naturally into
a discussion of techniques for developing parallel algorithms in
Chapter 2.

1.2 Classification of parallel computers

In a situation of rapid development in parallel computing, it is
hardly surprising that no entirely satisfactory taxonomy of
machines has yet been established. With some justification, it has
been suggested that Flynn’s classification, dating as it does from
1966 when parallel computing was in its infancy, does not
adequately reflect current architectural designs. Kuck (1982) has
attempted to provide a more up-to-date machine taxonomy and
the reader is referred to his paper for further discussion of this
subject. Nevertheless, as a guideline, Flynn’s categories remain
useful. He classifies computers into four types:

1. SISD: single instruction stream, single data stream

2. SIMD: single instruction stream, multiple data stream

3. MISD: multiple instruction stream, single data stream

4. MIMD: multiple instruction stream, multiple data stream.



