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Preface

The topology associated with a singular point of a complex curve has
fascinated a number of geometers, ever since K. BRAUNER* showed in
1928 that each such singular point can be described in terms of an asso-
ciated knotted curve in the 3-sphere. Recently E. BRIESKORN has brought
new interest to the subject by discovering similar examples in higher dimen-
sions, thus relating algebraic geometry to higher dimensional knot theory
and the study of exotic spheres.

This manuscript will study singular points of complex hypersurfaces
by introducing a fibration which is associated with each singular point.

As prerequisites the reader should have some knowledge of basic al-
gebra and topology, as presented for example in LANG, Algebra or VAN
DER WAERDEN, Modern Algebra, and in SPANIER, Algebraic Topology .

I want to thank E. Brieskorn, W. Casselman, H. Hironaka, and J. Nash
for helpful discussions; and E. Turner for preparing notes on an earlier
version of this material. Also I want to thank the National Science Foun-
dation for support. Work on this manuscript was carried out at Princeton
University, the Institute for Advanced Study, The University of California

at Los Angeles, and the University of Nevada.

See the Bibliography. Proper names in capital letters will always indicate
a reference to the Bibliography.
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§1. INTRODUCTION

Let f(z,,..., 2z, 4) be a non-constant polynomial in n + 1 complex

variables, and let V be the algebraic set consisting of all (n+ 1)-tuples

z

(zl,...,an)

of complex numbers with f(z)

[l

0. (Such a set is called a complex hyper-

surface.) We want to study the topology of V in the neighborhood of some

point z9,

We will use the following construction, due to BRAUNER. Intersect
the hypersurface V with a small sphere S, centered at the given point z°.
Then the topology of V within the disk bounded by S, is closely related
to the topology of the set

K=vVvVns .

(Compare §2.10 and §2.11.)

As an example, if z0 is a regular point of f (that is if some partial
derivative 6f/8zj does not vanish at z°) then V is a smooth manifold of
real dimension 2n near z%. The intersection K is then a smooth (2n-1)-
dimensional manifold, diffeomorphic to the (2n — 1)-sphere, and K is em-
bedded in an unknotted manner in the (2n+ 1)-sphere S_. (See §2.12)

By way of contrast, consider the polynomial
= q
f(z,,2,) = zf + 2z,

in two variables, with a critical point (df/dz, = df/dz, = 0) at the origin.

Assume that the integers p, q are relatively prime and > 2,

3



4 SINGULAR POINTS OF COMPLEX HYPERSURFACES

ASSERTION ( Brauner). The intersection of V = f~1(0) with a sphere
S, centered at the origin is a knotted circle of the type known as a ‘‘torus
kno¥ of type (p,q)’’ in the 3-sphere S, -

[Proof: 1t is easily verified that the intersection K lies in the torus
consisting of all (z,, z,) with |z,| = & |z,[ = g where‘rf and 7 are
positive constants. In fact, K consists of all pairs (.feq'B, r]ep’0+”‘/q)
as the parameter 6 ranges from 0 to 27: Thus K sweeps around the torus

q times in one coordinate direction and p times in the other.]

For example the torus knot of type (2, 3) is illustrated in Figure 1.

Figure 1. The torus knot of type (2, 3).

(By using more complicated polynomials one can of course arrive at much
more complicated knots. Compare §10.11.)

BRIESKORN has studied higher dimensional analogues of these torus
knots. For example let V (3, 2, 2, ..., 2) be the locus of zeros of the poly-

nomial

3 p
f(zl""’zn+1) = Z7 4 Zy 4+ 2



§1. INTRODUCTION 5

For all odd values of n this hypersurface intersects S_ in a smooth mani-
fold K which is homeomorphic to the sphere s28=1  n some cases (for
example when n = 3) K is diffeomorphic to the standard (2n — 1)-sphere,
while in other cases (for example n = 5) K is an ‘‘exotic’’ sphere. But in
all cases K is embedded in a knotted manner in the (2n + 1)-sphere S, -
These Brieskorn spheres will be studied in more detail in §9.
The object of this paper is to introduce a fibration which is useful in

describing the topology of such intersections

K=Vvns, Cs§,
Here are some of the main results, which will be proved in Sections 4
through 7.
FIBRATION THEOREM. If z° is any point of the complex hypersur-
face V = £~1(0) and if S, isa sufficiently small sphere centered at z°

’

then the mapping

¢(z) = f(z)/|£(z))

from S, ~K ito the unit circle is the projection map of a smooth fiber
bundle*. Each fiber

Fp = ¢~ e%) c s - K
is a smooth parallelizable 2n-dimensional manifold.

0

If the polynomial f has no critical points near z", except for z0 itself,

then we can give a much more precise description.

THEOREM. If 20 is an isolated critical point of f, then each fiber FO
has the homotopy type of a bouquet S® \/--- \V S® of n-spheres, the number
of spheres in this bouquet (i.e., the middle Betti number of Fg), being
strictly positive. Each fiber can be considered as the interior of a smooth

compact manifold-with-boundary,

Closure (FO) = FO UK,

The term ‘‘fiber bundle’’ will be used as a synonym for ‘“locally trivial fiber
space.”’
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where the common boundary K is an (n—2)-connected manifold.

Thus all of the fibers Fg fit around their common boundary K in the
manner illustrated in Figure 2. The smooth manifold K is connected if
n > 2, and simply connected if n > 3.

Here is a more detailed outline of what follows. Section 2 describes
elementary properties of real algebraic sets, following WHITNEY. A fun-
damental lemma concerning the existence of real analytic curves on real
algebraic sets is proved in §3. All of the subsequent proofs rely on this
lemma. The basic fibration theorem is proved in §4. Further details on

the topology of K and Fy are obtained in §5.

Figure 2.

Next we introduce the additional hypothesis that the origin is an iso-
lated critical point of f. Then a much more precise description of the fiber
is possible (§6), and a precise formula for the middle Betti number of the
fiber is given (§7). The topology of the intersection K is then described
in terms of a certain polynomial A(t) with integer coefficients which gen-

eralizes the Alexander polynomial of a knot. (§8.)



§1. INTRODUCTION 7

The Brieskorn examples of singular varieties which are topologically
manifolds are described in §9, and the classical theory of singular points
of complex curves is described in §10. The last section proves a general-
ization of the fibration theorem to certain systems of real polynomials. As
an example, a polynomial description of the Hopf fibrations is given.

Two appendices conclude the presentation.






§2. ELEMENTARY FACTS ABOUT REAL
OR COMPLEX ALGEBRAIC SETS

Let ® be any infinite field, and let ®™ be the coordinate space con-
sisting of all m-tuples x = (x,, ...,xm) of elements of ®. (We are princi-
pally interested in the case where ® is the field R of real numbers or the

field C of complex numbers.)

DEFINITION. A subset V C ®™ is called an algebraic set® if V is
the locus of common zeros of some collection of polynomial functions on
o™,

The ring of all polynomial functions from ®™ to ® will be denoted by
the conventional symbol d)[xl, seivh xm]. Let

IV € Ohx,, . X

)

be the ideal consisting of those polynomials which vanish throughout V.
The Hilbert ‘‘basis’’ theorem asserts that every ideal is spanned (as

¢ [x,, ..., x]-module) by some finite collection of polynomials. It follows
that every algebraic set V can be defined by some finite collection of
polynomial equations.

An important consequence of the Hilbert basis theorem is the following:

2.1 Descending chain condition. Any nested sequence V, DV, DV,
D -+ of algebraic sets must terminate or stabilize (V;=V, =V, , =-)

after a finite number of steps.

It is customary in algebraic geometry to allow as ‘‘points’’ of V also
m -tuples of elements belonging to some fixed algebraically closed exten-
sion field of ®; but I do not want to allow this..

9



10 SINGULAR POINTS OF COMPLEX HYPERSURFACES

Note that the union V U V’ of any two algebraic sets V and V’in ®™
is again an algebraic set.

A non-vacuous algebraic set V is called a variety or an irreducible
algebraic set if it cannot be expressed as the union of two proper algebraic
subsets. Note that V is irreducible if and only if 1(V) is a prime ideal.
If V is irreducible, then the field of quotients f/g with f and g in the

integral domain
| C— xm]/l(V)

is called the field of rational functions on V. Its transcendence degree
over @ is called the algebraic dimension of V over ®.

If W is a proper subvariety of V, note that the dimension of W is less
than the dimension of V. (See for example LANG, Algebraic Geometry,
p. 29.)

Now let V C ®™ be any non-vacuous algebraic set. Choose finitely
many polynomials f,, ..., fk which span the ideal I(V) and, for each x ¢ V,
consider the k x m matrix (6fi/0xj) evaluated at x. Let p be the largest

rank which this matrix attains at any point of V.
DEFINITION. A point X ¢ V is called non-singular or simple if the
matrix (afi/axj) attains its maximal rank p at x; and singular* if
rank (afi(x)/axj) <

Note that this definition does not depend on the choice of {fl, . fk}.
(For if we add an extra polynomial ka = glfl e gkfk the resulting

new row in our matrix will be a linear combination of the old rows.)

LEMMA 2.2. The set 2(V) of all singular points of V forms a proper

algebraic subset (possibly vacuous) of V.

* L - . . .
This definition is certainly the correct one whenever V is a variety, or a union

of varieties all of which have the same dimension. In other cases it does not
correspond too well to intuitive expectations. For example if V is the union of a
point and a line, then only the point is non-singular.
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For a point x of V belongs to 2(V) if and only if every p x p minor
determinant of (afi/axj) vanishes at x. Thus X2 (V) is determined by

polynomial equations.

Now let us specialize to the case of a real or complex algebraic set.

THEOREM 2.3 (Whitney). If ® is the field of real (or complex) num-
bers, then the set V—2(V) of non-singular points of V forms a smooth,
non-vacuous manifold. In fact this manifold is real (or complex) analytic,

and has dimension m—p over ®,

The reader is referred to WHITNEY, Elementary Structure of Real Al-
gebraic Varieties, for the elegant proof of 2.3.

In the case of an irreducible V, Whitney shows that the dimension of
the analytic manifold V-2 (V) over ® is precisely equal to the algebraic
dimension of V over ®.

Here is another basic result.

THEOREM 2.4 (Whitney). For any pair VD W of algebraic sets in a
real or complex coordinate space, the difference V—W has at most a fi-

nite number of topological components.

For example, V itself has only finitely many components; and the
smooth manifold V-2 (V) has only finitely many components.

A proof of 2.4, only slightly different from WHITNE Y’s proof, will be
given in Appendix A.

Here are three examples. (Compare Figure 3.) Each example will be
a curve in the real plane having the origin as unique singular point.
EXAMPLE A. The variety consisting of all (x, y) in R? with
y?-x*(1-x¥ =0
illustrates the most well behaved and easily understood type of singular

point, a ‘“double point’’ at which two real analytic branches with distinct
tangents (namely y = x / 1-x2 and y = —x\/ 1—x2) cross each other.*

This can also be seen from the parametric representation x = sin 6, 2y = sin 20

(which shows that the curve is a ‘‘Lissajous figure®’).
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(Figure 3-A. For a definition of the term ‘‘branch’’ see §3.3.)

EXAMPLE B. The cubic curve
y2 - x2(x—1) =0

of Figure 3- B has an isolated point at the origin; yet this curve is also

irreducible.

(REMARK. Over the field of complex numbers, examples of this type
cannot occur. In fact a theorem of RITT implies that the manifold of sim-
ple points of a complex variety V is everywhere dense in V. Compare
VAN DER WAERDEN Zur algebraische Geometrie IIl, or Algebraische Geo-
metrie, p. 134.)

Figure 3-B. The curve

y =+ x\yx-1

Figure 3-A. The curve
y =+ xy1=-x2

jL_

Figure 3-C. The curve

x2=y(1+y1+y )

100 can be solved for y as a 33-

EXAMPLE C. The equation y3 =X
times differentiable function of x, yet this equation defines a variety V C R?
which has a singular point at the origin. The equation y3 + 2x2y—x4 = 0,

which is illustrated in Figure 3-C, can actually be solved for y as a real



