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Preface

Much of economics is concerned with modeling dynamics. There has been an
explosion of research in this area in the last decade, as ‘‘time series econometrics’
has practically come to be synonymous with ‘“‘empirical macroeconomics.”

Several texts provide good coverage of the advances in the economic analysis
of dynamic systems, while others summarize the earlier literature on statistical
inference for time series data. There seemed a use for a text that could integrate
the theoretical and empirical issues as well as incorporate the many advances of
the last decade, such as the analysis of vector autoregressions, estimation by gen-
eralized method of moments, and statistical inference for nonstationary data. This
is the goal of Time Series Analysis.

A principal anticipated use of the book would be as a textbook for a graduate
econometrics course in time series analysis. The book aims for maximum flexibility
through what might be described as an integrated modular structure. As an example
of this, the first three sections of Chapter 13 on the Kalman filter could be covered
right after Chapter 4, if desired. Alternatively, Chapter 13 could be skipped al-
together without loss of comprehension. Despite this flexibility, state-space ideas
are fully integrated into the text beginning with Chapter 1, where a state-space
representation is used (without any jargon or formalism) to introduce the key results
concerning difference equations. Thus, when the reader encounters the formal
development of the state-space framework and the Kalman filter in Chapter 13,
the notation and key ideas should already be quite familiar.

Spectral analysis (Chapter 6) is another topic that could be covered at a point
of the reader’s choosing or skipped altogether. In this case, the integrated modular
structure is achieved by the early introduction and use of autocovariance-generating
functions and filters. Wherever possible, results are described in terms of these
rather than the spectrum.

Although the book is designed with an econometrics course in time series
methods in mind, the book should be useful for several other purposes. It is
completely self-contained, starting from basic principles accessible to first-year
graduate students and including an extensive math review appendix. Thus the book
would be quite suitable for a first-year graduate course in macroeconomics or
dynamic methods that has no econometric content. Such a course might use Chap-
ters 1 and 2, Sections 3.1 through 3.5, and Sections 4.1 and 4.2.

Yet another intended use for the book would be in a conventional econo-
metrics course without an explicit time series focus. The popular econometrics texts
do not have much discussion of such topics as numerical methods; asymptotic results
for serially dependent, heterogeneously distributed observations; estimation of
models with distributed lags; autocorrelation- and heteroskedasticity-consistent

X1



standard errors: Bayesian analysis; or generalized method of moments. All of these
topics receive extensive treatment in Time Series Analysis. Thus, an econometrics
course without an explicit focus on time series might make use of Sections 3.1
through 3.5, Chapters 7 through 9. and Chapter 14. and perhaps any of Chapters
S. 11, and 12 as well. Again, the text is self-contained, with a fairly complete
discussion of conventional simultaneous equations methods in Chapter 9. Indeed,
a very important goal of the text is to develop the parallels between (1) the tra-
ditional econometric approach to simultaneous equations and (2) the current pop-
ularity of vector autoregressions and generalized method of moments estimation.

Finally. the book attempts to provide a rigorous motivation for the methods
and vyet still be accessible for researchers with purely applied interests. This is
achieved by relegation of many details to mathematical appendixes at the ends of
chapters. and by inclusion of numerous examples that illustrate exactly how the
theoretical results are used and applied in practice.

The book developed out of my lectures at the University of Virginia. I am
grateful first and foremost to my many students over the years whose questions
and comments have shaped the course of the manuscript. I also have an enormous
debt to numerous colleagues who have kindly offered many useful suggestions,
and would like to thank in particular Donald W. K. Andrews, Jushan Bai, Peter
Bearse. Stephen R. Blough, John Cochrane, George Davis, Michael Dotsey, John
Elder. Robert Engle. T. Wake Epps. Marjorie Flavin, John Geweke, Eric Ghysels,
Carlo Giannini, Clive W. J. Granger. Alastair Hall, Bruce E. Hansen, Kevin
Hassett, Tomoo Inoue, Ravi Jagannathan, Kenneth F. Kroner, Jaime Marquez,
Rocco Mosconi, Edward Nelson, Masao Ogaki, Adrian Pagan, Peter C. B. Phillips,
Peter Rappoport, Glenn Rudebusch, Raul Susmel, Mark Watson, Kenneth D. West,
Halbert White, and Jeffrey M. Wooldridge. I would also like to thank Pok-sang Lam
and John Rogers for graciously sharing their data. Thanks also go to Keith Sill and
Christopher Stomberg for assistance with the figures, to Rita Chen for assistance
with the statistical tables in Appendix B, and to Richard Mickey for a superb job of
copy editing.

James D. Hamilton
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Difference Equations

1.1. First-Order Difference Equations

This book is concerned with the dynamic consequences of events over time. Let’s
say we are studying a variable whose value at date ¢ is denoted y,. Suppose we are
given a dynamic equation relating the value y takes on at date r to another variable
w, and to the value y took on in the previous period:

Vo =&y, + W, [1.1.1]

Equation [1.1.1] is a linear first-order difference equation. A difference equation is
an expression relating a variable y, to its previous values. This is a first-order
difference equation because only the first lag of the variable (y,_,) appears in the
equation. Note that it expresses y, as a linear function of y, ; and w,.

An example of [1.1.1] is Goldfeld’s (1973) estimated money demand function
for the United States. Goldfeld’s model related the log of the real money holdings of
the public (m,) to the log of aggregate real income (/,), the log of the interest rate on
bank accounts (r,,), and the log of the interest rate on commercial paper (r.,):

m, = 0.27 + 0.72m,_, + 0.191, — 0.045r,, — 0.019r,.,. [1.1.2]
This is a special case of [1.1.1] with y, = m,, ¢ = 0.72, and
w, = 0.27 + 0.191, — 0.045r,, — 0.019r,,.

" For purposes of analyzing the dynamics of such a system, it simplifies the algebra
a little to summarize the effects of all the input variables (/,, r,,, and r_,) in terms
of a scalar w, as here.

In Chapter 3 the input variable w, will be regarded as a random variable, and
the implications of [1.1.1] for the statistical properties of the output series y, will be
explored. In preparation for this discussion, it is necessary first to understand the
mechanics of difference equations. For the discussion in Chapters 1 and 2, the values
for the input variable {w;, w,, . . .} will simply be regarded as a sequence of deter-
ministic numbers. Our goal is to answer the following question: If a dynamic system
is described by [1.1.1], what are the effects on y of changes in the value of w?

Solving a Difference Equation by Recursive Substitution

The presumption is that the dynamic equation [1.1.1] governs the behavior
of y for all dates . Thus, for each date we have an equation relating the value of
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y for that date to its previous value and the current value of w:

Date Equation

0 Yo = dy_; + Wy [1.1.3]

1 Y1 = @Yo + Wy [1.1.4]

2 Y, = Py, + w, [1.1.5]

t Y, = oy,_1+ w,. [1.1.6]

If we know the starting value of y for date r = —1 and the value of w for
datest = 0, 1, 2, . . ., then it is possible to simulate this dynamic system to find
the value of y for any date. For example, if we know the value of y fort = —1

and the value of w for ¢+ = 0, we can calculate the value of y for ¢t = 0 directly
from [1.1.3]. Given this value of y, and the value of w for t = 1, we can calculate
the value of y for ¢+ = 1 from [1.1.4]:

Y1 = dyo + wy = d(dy_, + wy) + wy,
or
yi = @y + dwy + wy

Given this value of y, and the value of w for t = 2, we can calculate the value of
y for t = 2 from [1.1.5]:

Yo =y, + wy = ¢(PPy_; + dwy + wy) + W,
or
y2 = &y 1 + ¢*wy + dw; + wa.

Continuing recursively in this fashion, the value that y takes on at date ¢ can be
described as a function of its initial value y_, and the history of w between date
0 and date

Ve = ¢l+1y_1 + ¢lw0 + ¢t—1wl + ¢.!-2w2 + - 4 ¢W1—1 + w,. [117]

This procedure is known as solving the difference equation [1.1.1] by recursive
substitution.

Dynamic Multipliers

Note that [1.1.7] expresses y, as a linear function of the initial value y _, and
the historical values of w. This makes it very easy to calculate the effect of w, on
v, If wy were to change with y_, and w, w,, . . . , w, taken as unaffected, the
effect on y, would be given by

9. _
o= [1.1.8]

Note that the calculations would be exactly the same if the dynamic simulation
were started at date ¢ (taking y,_, as given); then y,,; could be described as a
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function of y, and w, w,,, . . ., W, ;:

Yivj = ¢I+l})r—1 + ¢,jw, + ¢j—lwr+l + d’l—zwmz

[1.1.9]
+ -t ¢wr+j—1 + Wi
The effect of w, on y,,; is given by
Yyt
= ¢ 1.1.
ow, o) [1.1.10]

Thus the dynamic multiplier [1.1.10] depends only on j, the length of time separating
the disturbance to the input (w,) and the observed value of the output (y,,,). The
multiplier does not depend on ¢; that is, it does not depend on the dates of the
observations themselves. This is true of any linear difference equation.

As an example of calculating a dynamic multiplier, consider again Goldfeld’s
money demand specification [1.1.2]. Suppose we want to know what will happen
to money demand two quarters from now if current income /, were to increase by
one unit today with future income /,,, and /,,, unaffected:

am(+2 = aml+2 % % = d)z X %
al, aw, al, al,

From [1.1.2], a one-unit increase in /, will increase w, by 0.19 units, meaning that
aw,/al, = 0.19. Since ¢ = 0.72, we calculate

amr+2

o2 = (0.72)(0.19) = 0.098.

Because /, is the log of income, an increase in /, of 0.01 units corresponds to a 1%
increase in income. An increase in m, of (0.01)-(0.098) = 0.001 corresponds to
a 0.1% increase in money holdings. Thus the public would be expected to increase
its money holdings by a little less than 0.1% two quarters following a 1% increase
in income.

Different values of ¢ in [1.1.1] can produce a variety of dynamic responses
of y tow. If 0 < ¢ < 1, the multiplier dy, . ;/dw, in [1.1.10] decays geometrically
toward zero. Panel (a) of Figure 1.1 plots ¢’ as a function of j for ¢ = 0.8. If
—1 < ¢ < 0, the multiplier dy,, ;/dw, will alternate in sign as in panel (b). In this
case an increase in w, will cause y, to be higher, y,, , to be lower, y, , , to be higher,
and so on. Again the absolute value of the effect decays geometrically toward zero.
If ¢ > 1, the dynamic multiplier increases exponentially over time as in panel (c).
A given increase in w, has a larger effect the farther into the future one goes. For
¢ < —1, the system [1.1.1] exhibits explosive oscillation as in panel (d).

Thus, if |[¢| < 1, the system is stable; the consequences of a given change in
w, will eventually die out. If [¢| > 1, the system is explosive. An interesting pos-
sibility is the borderline case, ¢ = 1. In this case, the solution [1.1.9] becomes

yt+j = Y- + W, + Wi + Wii2 H v WH»/'—I + wl+j' [1-111]

Here the output variable y is the sum of the historical inputs w. A one-unit increase
in w will cause a permanent one-unit increase in y:

al+'
,l—’=1 forj=0,1,....
ow,

We might also be interested in the effect of w on the present value of the
stream of future realizations of y. For a given stream of future values y,, y,,,

1.1. First-Order Difference Equations 3



1.2 1.2

"

OJ

(a) ¢ = 0.8 (b) ¢ = 0.8

8 s

* 0 ) 0 20 - 0 10 RT
(c) o = 1.1 d) ¢ = —1.1

FIGURE 1.1 Dynamic multiplier for first-order difference equation for different
values of ¢ (plot of dy,, ;/dw, = ¢’ as a function of the lag j).

Y.4+2, - - . and a constant interest rate' r > 0, the present value of the stream at
time ¢ is given by

Yi+1 Ye+2 Yi+3
+ + SR 1.1.12
YT 145 1+ @A+ [ ]

Let B denote the discount factor:
B=1/(1 + r).

Note that 0 < 8 < 1. Then the present value [1.1.12] can be written as

> B [1.1.13]
j=0

Consider what would happen if there were a one-unit increase in w, with
Wi 1, Wi4a, . . . unaffected. The consequences of this change for the present value
of y are found by differentiating [1.1.13] with respect to w, and then using [1.1.10]

'The interest rate is measured here as a fraction of 1; thus r = 0.1 corresponds to a 10% interest
rate.
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