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Preface

As the range of applications for fiber-reinforced polymer (FRP) composite
materials in civil engineering constantly increases, there is more and more concern
with regard to their performance in critical environments. The high temperature
behavior of composite materials is especially important, as fire is a potentially dan-
gerous scenario that must be considered at the design stage of civil infrastructure.

When a thermoset polymer resin is subjected to elevated and high temperatures,
it undergoes complex physical and chemical processes such as glass transition
and decomposition. These processes can very likely lead to significant changes in
thermophysical properties and can also result in considerable losses of stiffness and
strength. Experiments at the material level are necessary to quantify the changes
of the thermophysical and thermomechanical properties of the material across a
full temperature range, covering both its physical and chemical processes. Equally
important, theoretical modeling is required to predict such material properties
under elevated and high temperatures based on the description of these physical
and chemical processes.

The above understanding forms the basis for the development of thermophysical
and thermomechanical property sub-models for composite materials at elevated
and high temperatures, and also for the description of the post-fire status of
the material. By incorporating these thermophysical property sub-models into heat
transfer theory, thermal responses can be calculated using finite difference method.
By integrating the thermomechanical property sub-models within structural theory,
the mechanical responses can be described using finite element method and the
time-to-failure can also be predicted if a failure criterion is defined.

Full scale experiments on FRP structural members subjected to realistic fire
exposure are also necessary. Not only does this supply valuable results and provide
confidence for the fire performance of FRP structural members to be used in
civil engineering, it also validates the above modeling concepts on the structural
level. Similarly, as performed in the fire design of structures made by traditional
materials such as steel and reinforced concrete, active and passive fire protection
techniques may be necessary for prolonging resistance time of composite materials
in fire. Such techniques are reviewed and compared, particularly with regard to
their applications for composite materials.
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1
Introduction

1.1
Background

Nature resources, energy shortage, and global warming are recognized as the major
issues faced in the twenty-first century. It was reported that buildings expend 32%
of the world’s resources in construction, consume approximately 40% of global
energy, and produce approximately 40% of total greenhouse gas emissions [1]. Steel
and concrete dominate the construction market of civil infrastructure, with current
consumption of 1m’ per person/year for the latter (which is always reinforced
with steel reinforcements) [2]. Steel is an unrenewable resource in nature and
its manufacturing is very energy intensive leading to a high carbon footprint.
Ordinary Portland cement, as an essential component in concrete, has high
embodied energy and contributes approximately 5-7% of global anthropogenic
CO, emissions.

The choice of materials in construction of civil infrastructure therefore becomes
an important decision. Embodied energy associated with a material that accounts
for the total energy necessary of an entire product lifecycle as well as associated
carbon footprint must be considered [3]. The way to construct civil infrastructure
is of further concern. Today, it appears that almost all types of industry have
adopted automated processes to speed up, optimize, and economize production.
Construction industry, however, seems to be an exception. Bridges and buildings
are still cast on-site using scaffolding and formwork and employing cumbersome
wet-in-wet processes with increasingly unacceptable consequences regarding cost,
quality, and safety [4].

The arrival of new materials in the field of civil construction such as fiber-
reinforced polymer (FRP) composites may provide a solution for all those
challenges. Compared with steel, FRP composites have similar strength but
lighter weight (1/4-1/6 of steel). FRP composites may also exhibit advantageous
environmental characteristics, particularly if glass fibers (glass fiber-reinforced
polymer, GFRP) such as low carbon dioxide emissions, are used. The embodied
energy analysis further indicates that GFRP material is a clear winner in struc-
tural applications as compared to steel [5]. These lightweight and high-strength
materials can be formed into complex shapes, and are therefore compatible
with industrialized prefabrication and rapid installation. The applications of such

High Temperature Performance of Polymer Composites, First Edition. Yu Bai and Thomas Keller.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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materials in engineering structures are expected to contribute significantly to pro-
found innovations and benefits in different economic, environmental, and social
levels.

In order to successfully implement FRP composites in civil infrastructure
construction, the performance of FRP composites under elevated temperatures
and fire must satisfy the corresponding requirements such as structural adequacy,
integrity, and insulation [6]. The thermophysical and thermomechanical behavior
of an FRP composite depends mainly on its resin component. The material
state and material properties of a polymer composite remain fairly stable in
the low temperature range before the glass transition of the resin occurs, after
which however they undergo significant changes. When temperature continuously
increases, the resin decomposes, resulting in further changes in material state and
material properties.

These physical and chemical processes lead to an obvious degradation of the
stiffness and strength of FRP composite materials. Figure 1.1 shows a cross section
of the lower face sheet of a DuraSpan® bridge deck (E-glass fiber-reinforced
polyester resin) subjected to an 1SO-834 (International Standards Organization)
fire curve on the underside. It can be seen that almost all the resin was decomposed,
leaving only the fibers in the pultrusion direction. But, as these fibers no longer
provide composite action, the load-bearing capacity of such a deck is considerably
reduced. If FRP composites are to be used in load-bearing structural applications,
it must be possible to build structures that resist such extended excessive heating
and/or fire exposure and also to understand, model, and predict their endurance
when subjected to combined thermal and structural loads. The application of FRP

Figure 1.1 Cross section of a FRP profile after fire exposure. (With permission from EPFL-
CClab.)
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materials in structures requiring extended excessive heating resistance and/or fire
resistance, such as in building structures, necessitates the study of the thermal and
mechanical responses of large-scale and complex composite structures over longer
time periods [8].

Most of the previous studies concerning FRP composites under elevated and
high temperatures involve military applications, aerospace, and marine and off-
shore structures. The required endurance times for marine and offshore composite
structures are longer than those for the initial military applications, although
they are still low in comparison to those required for civil infrastructure,
especially in building construction [8]. For example, most multistory buildings
are required to resist 90min of fire exposure in many countries. It has been
recognized that structural system behavior under excessive heating and fire con-
ditions should be considered as an integral part of structural design, whereas
only very limited research has been conducted concerning the progressive ther-
momechanical and thermostructural behavior of FRP composites for building
construction.

Although several thermochemical and thermomechanical models have been
developed for the thermal response modeling of polymer composites, most are
based on thermophysical and thermomechanical property submodels without a
clear physical and chemical background (empirical curves from experimental
measurements). Very few have considered the thermomechanical response of
composites subjected to excessive heating and/or fire exposure lasting longer than
1 h. Existing thermochemical or thermomechanical models cannot adequately con-
sider the progressive material state and property changes and structural responses
that occur during the extended excessive heating and/or fire exposure of large-scale
FRP structures. In addition, after excessive heating or fire exposure, the condition
of these load-bearing composite structures has to be assessed. Very often, the major
parts of a structure will not be decomposed or combusted, but only experience ther-
mal loading at elevated and high temperatures. Information and models relating
to the assessment of post-fire properties for load-bearing FRP structures are still
lacking [8].

In this book, it is intended to provide the reader with useful and comprehensive
experimental data and models for the design and application of FRP composites at
elevated temperatures and fire conditions. The progressive changes that occur in
material states and the corresponding progressive changes in the thermophysical
and thermomechanical properties of FRP composites due to thermal exposure will
be discussed. It will be demonstrated how thermophysical and thermomechanical
properties can be incorporated into heat transfer theory and structural theory. The
thermal and mechanical responses of FRP composites and structures subjected to
hours of realistic fire conditions will be described and validated on the full-scale
structural level. Concepts and methods to determine the time-to-failure of polymer
composites and structures in fire will be presented, as well as the post-fire behavior
and fire protection techniques.
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1.2
FRP Materials and Processing

1.2
FRP Materials

FRPs are composite materials made of a polymer matrix reinforced with fibers. In
comparison to concrete (that is also a composite material), the fibers may carry and
transfer both compressive and tensile stresses. The polymer matrix bonds these
fibers together, prevents buckling of the fibers in compression, transfers stresses
between discontinuous fibers, protects the fibers from environmental impact, and
maintains the overall form of the resulting composite material.

Polymer matrix materials are categorized into thermoplastics and thermosets.
Thermoplastics soften and melt above a specific temperature and become solid
when cooled. They can be formed by repeated heating and cooling. In contrast,
thermosets normally cure by irreversible chemical reaction (between two compo-
nents, a resin and a hardener, for example, for epoxy (EP)) and chemical bonds are
formed during the curing process. This means that a thermoset material cannot
be melted and reshaped once it is cured. Thermosets are the most common matrix
materials used for FRP composites in construction nowadays. The most common
thermosets are unsaturated polyester (UP), EP, and vinylester (VE) [9]. Because of
their organic material nature, all of these matrix materials are sensitive to elevated
temperatures and fire.

Major fiber types used for FRP composites in construction are glass, carbon, and
aramid. Properties of these fibers are given in Table 1.1 [9]. Glass fibers are most
commonly used in structural applications because of their low manufacturing cost
and their high strength to weight properties. They are made by melting glass or
other raw materials to liquid form, then extruded through bushings into filaments
and coated with a chemical solution. Different types of glass fibers exist, among
them E-glass fibers (aluminoborosilicate glass with less than 1% alkali oxides) are
the most popular ones in structural applications [10]. Commercial E-glass fibers are

Table 1.1  Mechanical properties of glass, carbon, and aramid fibers.

Property E-glass fibers Carbon fibers Aramid fibers
Tensile strength (MPa) 3500 2600-3600 2800-3600
Young's modulus (GPa) 73 200-400 80-190
Elongation at failure (%) ~4.5 0.6-1.5 2.0-4.0
Density (gem—?) 2.6 1.7-1.9 1.4
Coefficient of thermal 5-6 Axial —0.1to —1.3, —3.5
expansion (107 ¢ K1) radial 18

Fiber diameter (um) 3-13 6-7 12

Fiber structure Isotropic Anisotropic Anisotropic

With permission from EPFL-CCLab



