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1) 1Introduction

Before I get down to the business of exposition, I'd
like to offer a little motivation. I want to show that there
are one or two places in homotopy theory where we strongly
suspect that there 1s something systematic going on, but
where we are not yet sure what the system 1is.

The first question concerns the stable J-homomorphlsm.

I recall that this 1is a homomorphism

. S n
J: wr(SO) > T = S"), n large.

Trn

It 1s of interest to the differentlial topologists. Since
Bott, we know that vr(SO) is periodic with period 8:

r=1 2 3 4 5 6 7 8 Queee

T.(80) =2, O Z o 0 0 z 2y  Zpees

On the other hand, WS

ask about the behavior of J. The differential topologlsts

is not known, but we can nevertheless

prove:
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Theorem: If r =4k - 1, so that v (SO) = Z, then J(r_(S0))
= Zm where m 1s a multiple of the denominator of Bk/4k
(Bk being in the kP Bernoulli number, )

Conjecture: The above result is best possible, i.e.

J(vr(SO)) = Z where m 1s exactly this denominator.

Status of coniecfure: No proof in slght.

Conjecture: If r = 8 or & + 1, so that

T.(80) = Z,, then J(wr(so)) = Zge

Status of conjecture: Probably provable, but thils is

work in progress.

The second question 1s somewhat related to the first;
it concerns vector fieids on spheres. We know that s” admits
a continuous field of non-zero tangent vectors if and only 1if
n is odd. We also know that if n = 1,3,7 then S" is
parallelizable: that 1s, sh admits n continuous tangent
vector fields which are linearly independent at every point.
The question is then: for each n, what is the maximum
number, r(n), such that 8" admits r(n) continuous tangent
vector fields that are linearly independent at every point?
This 1s a very classical problem in the theory of filbre
bundles. The best posltive result 1s due to Hurwitz, Radon
and Eckmann who construct a certain number of vector fields
by algebraic methods. The number, p(n), of fields which they
construct is always one of the numbers for which wr(SO) is
not zero (0,1,3,7,8,9,11....). To determine which, write
n+1e=(2t+1)2Y: then p(n) depends only on v and increasing

v by one increases p(n) to the next allowable value.
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Conjecture: This result is best possible: 1.e.

p(n) = r(n).

Status of conjecture: This has been confirmed by Toda

for v< 11.

It seems best to consider separately the cases in which
p(n) = 8k - 1, 8, 8k + 1, 8k + 3. The most favourable case
appears to be that in which p(h) = 8k + 3. I have a line of
investigation which glves hope of proving that the result is
best possible in thls case.

Now, I. M. James has shown that if S3™% admits

r-fields, then s29-1

admits r + 1 fields. Therefore the
proposition that p(n) = r(n) when p(n) = 8k + 3 would imply
that r(n) < p(n) + 1 1in the other three cases. This would
seem to show that the result is in sight in these cases also:
elther one can try to refine the inference based on James'
result or one can try to adapt the proof of the case

p(n) = 8k + 3 to the case p(n) = 8k + 1.



2) Primary operations

It 1s good general philosophy that 1f you want to show
that a geometrical construction 1s possible, you go ahead and
perform 1t; but if you want to show that a proposed geometric
construction is impossible, you have to find a topological
invariant which shows the impossibility. Among topological
invariants we meet first the homology and cohomology groups,
with their additive and multiplicative structure. Afte that
we meet cohomology operations, such as the celebrated

Steenrod square. I recall that this 1s a homomorphism

i

sqts HY(X,¥52,) » w7

defined for each pair (X,Y) and for all non-negative integers
4 and n. (H" is to be interpreted as singular cohomology.)
The Steenrod square enjoys the following properties:

1) Naturality: 1if £:(X,¥Y) » (X,Y) 1s a map, then

£*(sqtu) = sqtr*u.

N Hn+l (

2) Stability: if 6: H (Y;Z X,Y;Z,) is the

5)
coboundary homomorphism of the pair (X,Y), then
Sqi(ﬁu) = 6(Sq1u)
3) Properties for small values of 1.
i) Sqou = u
11) Sqlu = pu where g 1s
the Bockstein coboundary asscclated with the exact

sequence O > 22 > Z4 > 22 »> 0.



4) Properties for small values of n.
i) 1fn =1 Sqiu = u2
11) if n <1 sqlu =o0.
5) Cartan formula:
i
sq'(uv) = = (Sqlu)«(sdv)
Jtk=1
6) Adam relations: if 1 < 2j then
1. 3 Kk, 0
= .. 8
Sq"3q z Me,1 8278

ked = 1+]
k>22

where the kk ) are certain binomial coefficients which one
3 /4

finds in Adam's paper [1].
References for these properties are found in Serre(2]). These
properties are certainly sufficient to characterize the
Steenrod squares axiomatically; as a matter of fact, it is
sufficient to take fewer properties, namely 1, 2, and 4(i).

Perhaps one word about Steenrod's definition is in

order. One beglins by recalling that the cup-product of
cohomology classes satisfies

7) uev = (-1P%.u  where

u € HP(X;2) and v € HY(X;2).
However the cup-product of cochains does not satisfy thils
rule. One way of proving this rule is to construct, more or
less explicitly, a chain homotopy: +to every pair of cochains,

X, ¥, one assigns a cochain, usually written xw..x, so that

1l

B(xw,y) = xy - (-1)P%x
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1f x and y are cocycles of dimension p and q respectively.
Therefore if x is a mod 2 cocycle of dimension m

B(xw x) = xx + xx = 0 mod 2. We define Sqn'lx = {x «;x],
the mod 2 cohomology class of the cocycle X p X Steenrod's
definitlon generalized this procedure.

The notion of a primary operation is a bit more
general. Suppose given n,m,G,H where n,m are non-negative
integers and G and H are abelian groups. Then a primary
operation of type (n,m,G,H) would be a function

¢: HY(X,Y;6) = H"(X,Y;H)

defined for each pair (X,Y) and natural with respect to
mappings of such pairs.
Similarly, we define a stable primary operation of

degree 1. This is a sequence of functions:
¢, H(X,¥;6) - Hp+i(X,Y;H)

defined for each n and each pair (X,Y) so that each function
¢n is natural and ¢n+15 = 5¢n where 6 is the coboundary
homomorphism of the pair (X,¥). From what we have assumed it
can be shown that each function ¢n is necessarily a
homomorphism.

Now let's take G = H = 22. Then the stable primary
operations form a set A, which is actually a graded algebra
because two such operations can be added or composed in the
obvious fashion. One should obviously ask, "What is the

structure of A?"
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Theorem 1, (Serre) A is generated by the Steenrod
squares Sqi.

(For this reason, A 1s usually called the Steenrod
algebra, and the elements a € A are called Steenrod operations.)
More precisely, A has a Zz-basis consisting of the

operations

11 12 i

Sq 18q 2...8q ¢

take all values such that

wherg 11,...,1t

1p22n £r<t) and 1, > O.

The empty product 18 to be admitted and interpreted as the
identity operation.

(The restriction 1,2 21,, 1s obviously sensible in
view of property 6) listed above.) There 1s an analogous
theorem in which Z2 is replaced by Zp.

i i

Remark: The products Sq l...Sq t

conslidered above are called
admlsslible monomials, It 1s comparatlvely elementary to show

that they are linearly independent operations. For example,

n

take X = X RP”, a Cartesian product of n copies of real
1

(infinite dimensional) projective spaces: let Xy € Hl(RPw;Za)
be the generators in the separate factors (i = 1,...,n), 80
that H*(x;ze) 1s a polynomial algebra generated by Xy,ee¢,X .
Then Serre and Thom have shown that the admissible monomials

of a given dimension d take linearly independent values on
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the class X = Xy 'Xgeee*X, € Hn(X;ZQ) if n is sufficiently

large compared to d.

1, i

The computation of 8q “... °*Sq t

on the class x 1s
reduced by the Cartan formula to the computation of other
iterated operations on the xi's themselves. Properties 3(1),
4(1) and (11) imply that Sqoxi = Xy, Sqlx1 = xi, and

quxi =0 for j » 1. The Cartan formula then-allows us to
compute iterated operations on the xi‘s. The detalls are
omitted.

The substance, then, of Theorem 1 is that the
admissible monomials span A, This is proved by uslng
Ellenberg-MaclLane spaces.

I recall that a space K is called an Ellenberg-MacLane
space of type (w,n)--written K € K(m,n)--1f and only if

T if r=n

T.(K) = {

0 otherwise.
It follows, by the Hurewlcz Isomorphism Theorem (3£ n> 1)'
that Hr(K) = 0 for r < n and H (X) = 7. Hence HY (K;m) =
Hom (w,m), and H'(K;T) contains an element b", the funda-
mental class, corresponding to the identity homomorphism
from 7 to 7.

Concerning such spaces K, we have
Lemma 1. Let (X,Y) be "good" pair (e.g. homotopy equivalent
to a CW-pair.) Let Map (X,Y;K,ko) denote the set of homotopy
classes of mappings from the pair (X,Y) to the pair (K,ko),
ko being a point of K. Then this set is in one-to-one



correspondence with Hn(X,Y;v). The correspondence is glven
by assigning to each class, {f]}, of maps the element f*bn.
This lemma 1s proved by obstruction theory and 1s

classical, see e. g. [3].

Lemma 2. There 1s a one to one correspondence between coho-

mclogy operations ¢, as defined above, and elements c™ of

H™(G,n;H). The correspondence 1s given by ¢ —> (o). The

notation H"(G,n;H) means the cohomology groups (coefficients H)

of an ﬁilenberg-MacLane space of type (G,n), this depends

only on G, n and H. b"” is the fundamental class in H"(G,n;G).
This lemma follows from the first rather easily for

n

"nice " pairs. But a general pair can be replaced by a C-W

palr without affecting the slugular cchomology.

There 1s .a similar corollary for stable operatilons.
In order to state it, I need to recall that if K € K(G;n) then
its space of loops, (K, is an Eillenberg-liacLane space of type
(G,n-1). The suspension o: H"(K) — (7K) is defined
as follows:

Let K denote the space of paths in K. Then we have
T: (LK,7K) = (K,pt), the map that assigns to each path its
ehdpoint. The map o 1s the composition:

H'(K) < H"(K,pt) N H™ (LK, OK) <-—t‘i 2L (k).

The arrows which point the wrong way are convenlently iso-
morphisms so can be reversed, the last one, 6, is such because

LK 18 a contractible space.
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Iemma 3. There is a 1-1 correspondence between stable

primary operations, as conslidered above, and sequences of

elements e"*l ¢ Hn+1(G,n;H) {one for each n) such that

N+l - en-1+i.

oe

We may rephrase this. For n sufficiently large the
groups Hp+1(G,n;H) may be ldentified under the map o for it
is then an 1somorphism. Any of these isomorphic groups can
be called the "stable Ellenberg-MacLane group of degree i".
The lemma then asserts that stable primary operations of
degree 1 correspond one to one wilth the elements stable of
the Ellenberg-MacLane group of degree i. For Theorem 1,
then, it remains to calculate these groups in the case

G=H-= 22.

Theorem 2. (Serre) H*(ZZ’n522) is a polynomial
algebra, having as generators the classes

i

1. 1
sq 1sq 2...5q 'p?

where 11,...,it take all values such that

1) 1) 2 215,000,1 > 21

o1 2 1> 0

t v

11) 1, <1,

+ o0 + 1t + n for each r.
The empty sequence is again allowed and interpreted as

indicating the fundamental class b°.

Remark: These restrictions are obviously sensible in view of
properties 4 and 6 above. The conditions are not all inde-

pendent but this does not worry us.



11

The proof of the theorem proceeds by induction on n.
We know that H*(K(Ze,l);zz) is a polynomial algebra on one
generator b because RE” qualifies as a K(Zp,1). The
inductive step consists in argulng from H*(Za,ngza) to
H*(Zz,n+l;22) by applying the little Borel theorem to the
fibering 0K — LK —> K mentioned above where K € K(Za,n+l).

Let me recall the little Borel theorem.

Classes fy,f ,e0s,fy,.00 1n H*(F;Zz) are said to form
a simple system of generators if and only 1if the products

€

€1 %2 “n
17 5 el £ (e1 = 0, or 1) form a Z

£ -basis for H (F;Z,).

2

Theorem 3. (Borel) Let F—> E —>B be a fibration

with B simply connected and E contractible. Let bl’bz”"

be classes in H*(B;Zz) such that only a finite number of them
lie in any one group Hn(B;Za) and such that {c(bi)} is a
simple system of generators in H*(F;ZZ). Then H*(B;Zz) is a

polynomial algebra generated by-bl,bg,... o

For example, in H*(Zz,l;zg) the classes bl, (b; ?,
1,4 1,8
s (b s «o» fOorm a simple system of generators. Also

in H*(ZQ,E;ZQ) we have the classes bz, Sqlba, Sqesqlbz, eee

1

(b

and  o(b%) = b

G(Sqlb2 1)2

= Sato(b?) = sqt(bl) = (b
0(59%5q*b%) = 5q%0(sq’bl) = 8¢ (p1)? = (b})*
etec.

Hence H*(Za,2;22) i1s a polynomial algebra generated by b .
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b2, Sq1b2, SqQSqlba,... . In a similar way, one argues from

K(Ze,n) to K(Zz,n+l).

The 1little Borel theorem 1s most convenlently proved
by using the comparison theorem for spectral sequences. In
fact, in the situation of the little Borel theorem, we havé
two spectral sequences: ¢the first is the spectral sequence of
the fibering, and the second is our idea of what the first
ought to be. We wish to prove these coincide--which 1is just
what the comparison theorem is for.

However, you have to choose your comparison theorem.
The version given by John Moore [4] won't do, because in that
version, you have to start on the chain level, and here we
wish to start with the Eo terms. The version given by
Chris Zeeman [5] will do very nicely. Zeeman's proof,
however, can be greatly simplified in the special case when
the E  terms are trivial, and this is the case we need
(in fact, 1t's the only case I've ever needed.)

Before stating the comparison theorem, we recall
some notation. A spectral sequence contains a collection of
groups Eg’q w>r>2, p,q integers (Ours will satisfy
Eg’q =0 if p<Oorq<O0.,) It also contains differentials

., wPsq _, pPtr, g-r+l ° = :
dr' Er > Er such that dr dr 0 and such that

* % * %
H(Er ’dr) = E, ;+ A map, f, between one spectral sequence
{Eﬁ’q] and another (Eg’q] 18 a collection of homomorphism

f: Eg’q - Eg’q which commute with the d_'s in an obvious way.
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Theorem 4. Comparison Theorem for Spectral Sequences.

Let £ be a map between two spectral sequences Ef,’q and
flr).’q such that:
1) If f: Eg’o = i‘.'g’O for p < P

Then f: Ep’d = ER’Y  for p < P, all q
11) Ei’q = 0 ﬁg’q = 0 except for (p,q) = 0,0) in

which case
£r 500 = §9:0

o0

Then f: Eg’o &= Eg’o for all p.

Proof: The proof 1s by induction on p. The result
is true for both p = 0 and p = 1 by assumption because

0,0

Eo 1,0

1,0

_ 20,0
= E? = E;

2
an 1lsomorphism on these E_ terms. Now assume that

and E_ , and similarly for E, and f is

r: E5*0 = EB*C for p < P. Recall that 0cBf’¥czg’cE’?

where BS’Y = Im d, and 25°% = Ker d,, and H, = 25’%4/B)’? = 34

(The tedious superscripts will sometimes be omitted in what

follows.) Since d, is defined on E2’Y, Im d

3 : z and Ker d3 glve

3

: D,Q
rise to subgroups B:,’ and ZS such that O CB2 ‘:B:,> C Z‘.5 - ch E2 .

This process continues; in general we have 0 = Bch2 CoeeeC

= wP24
BpCZQ+1ch...CZQCZl E2 . The quotient group

Zq+l/Bp is EP*9, hence zero in our case, at least if
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(psa) # (0,0). The boundary map dr give an isomorphism
PsQ p+r,q-r+l
(Zr-l/zr) PSS (Br/Br-l) ’

Lemma 4. Under the isomorphism f: Eg’q - Eg’q Jwhich holds

for p/S.P) Br corresponds to E} and Zr corresporids to 7;

forp+r £ P.

Proof: Again by induction. For r = 1 our conventlions
make 1t trivial. For r = 2 it 1s also clear. The inductive
step }s made by inspecting the following diagram in which
D <P,

\
‘ a mono
/B p-r,q+r-1 o op-r,q+r-1 v, op,q PsQ /pDsQ
(Zr-l rql) ’ Er ’ > Er’ > E2’ ril

d mono q
— ~r,q+4r-l. =pD- +r-1 o s
(Zr-_l/:-B- _l)p :Q =='~>Ep r,q+r-1 Ty E?-’q —_— 'E’ng/Ei_l

Returning to the main line of argument, we now consider the

group Eg’q where p + g =P q > 1. By the lemma Bp (= Zq+1)

is preserved by f and so is Zq. Therefore (Zq/Z )P 3g

q+l
mapped isomorphically by f. But

= 1,0
(z_/z_.,)P4 (B ,/B P70,
Q' “q+l a———> q+l’ Tq
q+l

Therefore (Bq+1/Bq is mapped isomorphically by f

(for 1 < q < P). Now Eg+l’o has the composition series

_ : o - nPt1,0
0 = B1CBEC"’CBp+l Z1 E2 . We have Just shown that



