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Preface

This book is concerned with the applications of the boundary element
method to problems of time-dependent inelastic deformation and frac-
ture of metallic media. Such problems are of interest in many fields
including energy, turbomachinery and aerospace.

Although the boundary element method is rooted in classical integral
equation formulation of problems, numerical implementation of the
method is of fairly recent vintage. Roughly speaking, the method has
been used to obtain numerical solutions to linear problems in solid
mechanics in the 1960s and problems with material nonlinearities in the
1970s. 1 and my coworkers have been intimately involved with
applications of the method to solve nonlinear problems in solid
mechanics, particularly in viscoplasticity and fracture, for the last seven
years.

This book is divided into ten chapters. The first four chapters set the
stage for applications to specific classes of problems. These are followed
by four chapters dealing with the applications to planar, axisymmetric,
torsion and plate bending problems. The last two chapters are concerned
with inelastic fracture mechanics.

The strength or weakness of a numerical method can only be judged
through obtaining numerical solutions to specific problems. With this in
view, many numerical applications of the method are presented in the
book. The results obtained by the boundary element method are com-
pared to those obtained by other methods whenever possible. In parti-
cular, the more widely used finite element method is given special
attention and comparisons of results from the boundary element and
finite element methods, with regard to accuracy and computational
efficiency, have been carried out in many cases. Both these are powerful
general-purpose methods and, as can be expected, the boundary element

vii
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method appears superior in some cases while the finite element method
performs better in others. In many applications, both methods appear to
be equally efficient.

This book is directed towards researchers, practising engineers and
scientists, and postgraduates. The reader is expected to be familiar with
the general area of solid mechanics and with the basic techniques of
applied mathematics and numerical methods.

I wish to thank a number of people and organizations who have
contributed in various ways to make this book possible. First, my
principal research collaborators, my former PhD students Dr V. Kumar
and Dr M. Morjaria, who have made significant contributions to much
of our group’s research that has been described in this book. Next, my
current students V. Sarihan and V. Banthia, for their contributions to the
work on axisymmetric deformation and inelastic fracture, respectively,
and A. Chandra and S. Ghosh for their help during the writing of this
book. I am indebted to my colleagues at Cornell, Professors Hart,: Li,
Conway, Moon and Pao, for their encouragement, and to Professors
Banerjee and Shaw of Buffalo and Rizzo and Shippy of Kentucky for
several useful technical discussions. I greatly appreciate the terrific
artwork of Mrs Jane Jorgensen who was never a day late, and the
excellent typing of Ms Delores Hart who typed so many long equations
accurately and cheerfully. Finally, I appreciate the effort of Ms Hillary
Rettig who helped finish typing the manuscript on time.

The research performed by our group, which has been presented in
this book, was supported by a contract from the US Department of
Energy and a grant from the National Science Foundation.

SUBRATA M UKHERJEE
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CHAPTER 1

Introduction

The boundary element method (BEM—also called the boundary integral
equation method) is a powerful general-purpose procedure for the so-
lution of boundary value problems in many branches of science and
engineering. This method is based on an integral equation formulation of
a given problem and has been used to solve problems in finite regions of
arbitrary geometry as well as in infinite regions. The method was initially
applied to linear problems but several nonlinear problems have been
attacked by the method in recent years.

The boundary element method has several potential advantages over
the widely used finite element method (FEM) for the solution of
boundary value problems. One advantage is that the number of
unknowns in resultant algebraic systems depends only on the boundary
(or surface) discretization in BEM rather than on the discretization of the
entire domain of the body as in FEM. The resultant matrices from the
BEM are fully populated but tend to be numerically well conditioned.
This arises from the fact that the singular kernels in the integral
equations weigh the unknown quantities near a singular point more
heavily than those far from it, thus causing the dominant components in
a coefficient matrix to lie on or near its diagonal.

Another advantage of the BEM is that physical quantities obtained by
differentiation of the primary variables, for example stresses or
curvatures obtained from displacements, are determined pointwise inside
and on the body, so that discontinuities in these variables across element
boundaries cannot arise. This can be very important in problems of
inelastic deformation as will be discussed later in the book. A third
important advantage is that problems in infinite regions can be solved as
easily as those in bounded regions. Finally, in problems where internal
discretization is necessary in order to evaluate integrals with known
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integrands over the domain of a body, the topology of the internal cells is
much simpler than for the FEM. In fact, the internal cells need not even
cover the whole domain in some examples, as is the case with inelastic
fracture mechanics problems discussed in the last two chapters of the
book.

An important limitation of the straightforward BEM formulation is
that the singular kernels of the integral equations must be known in an
appropriate infinite body having the same material properties as the
finite body being considered in a given problem. While these fun-
damental solutions are easily available in the applied mathematics
literature for certain differential operators in homogeneous media, they
might be difficult to obtain for a body composed of a general non-
homogeneous material. It is possible, however, to solve certain prob-
lems in nonhomogeneous media, by iterative methods using the
kernel(s) for the homogeneous medium.

The heart of the boundary element method, as mentioned earlier, is the
integral equation formulation of a given boundary value problem. The
mathematical basis of this approach, of course, is classical and numerous
applications of Green’s functions have been reported in the literature.
The earliest computer applications of the method date back about two
decades and include the areas of potential theory,!? fluid mechanics®*
and wave scattering.’ These papers might be said to have heralded the
modern era of the method.

Applications of the method have gained considerable momentum in
recent years, in step, it appears, with the rapid improvements in
computers. In the general area of solid mechanics, the method has been
applied to a large class of linear problems. This research spans most of
the important subject areas within solid mechanics, namely, linear
elasticity,®” linear viscoelasticity,® thermoelasticity,” linear elastic frac-
ture mechanics,'®'!! elastic torsion,'? bending of elastic plates,'® shell
theory'* and wave propagation in elastic media.'>!” This reference list
is by no means complete, but is intended to be a collection of titles of
some of the early papers in each subject area.

Applications of the BEM to nonlinear problems in solid mechanics is
of more recent vintage, with the first formulation for time-independent
plasticity being that due to Swedlow and Cruse.'® This was followed by a
numerical implementation by Riccardella.'® Another formulation for
plasticity using an equivalent body force based on initial stress is due to
Banerjee and Mustoe.?® The author of this book, together with his
coauthors, have been active in the applications of the BEM to nonlinear
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problems of time-dependent inelastic deformation. A BEM formulation
for viscoplastic problems?! was followed by a numerical implementation
for planar problems.?? Other applications include inelastic torsion of
prismatic shafts,>® inelastic bending of plates,>* and, very recently,
inelastic fracture mechanics.?>2° Currently, there is a great deal of
activity in computer applications of the BEM to a wide class of problems
in engineering science. The reader is referred to three recent books?”2°
which summarize the current state of the art of BEM applications in
excellent fashion.

The purpose of this book is the presentation of applications of the
boundary element method to nonlinear problems of time-dependent
inelastic deformation and inelastic fracture mechanics. A discussion of
constitutive models for inelastic deformation (creep and combined
creep—plasticity or viscoplasticity) is given in Chapter 2. General
formulations for three-dimensional problems (Chapter 3) are followed by
a discussion of solution strategy and time integration in Chapter 4. Time
integration with automatic time-step selection plays a crucial role in the
successful completion of solutions of these time-dependent problems.
Specific numerical applications to planar problems (Chapter 5), axisym-
metric problems (Chapter 6), inelastic torsion (Chapter 7) and bending of
thin plates (Chapter 8) follow. In each of these cases, comparisons with
the results of finite element method solutions, and, whenever possible,
comparisons with direct solutions from finite difference type techniques,
have been carried out. The last two chapters of the book are concerned
with applications of the method to problems of inelastic fracture
mechanics. The time-histories of stresses near the tip of a stationary
crack in a plate undergoing anti-plane shear or planar creep deforma-
tion are calculated, and the results are compared with recent asymp-
totic analytical solutions. In essence, this book is an attempt to pre-
sent a comprehensive and up-to-date account of BEM applications
in time-dependent inelastic problems in solid mechanics and to demon-
strate the power of the method in solving these complicated nonlinear
problems.
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CHAPTER 2

Constitutive Models

Constitutive models for the description of material behavior in the
inelastic regime are discussed in this chapter. The materials considered
are assumed to be metallic and the displacements and strains are
assumed to remain small enough so that no distinction needs to be made
between initial and current configurations.

2.1 CONSTITUTIVE MODELS FOR CREEP

Conventional design and analysis of metallic structures undergoing time-
dependent inelastic deformation is generally carried out by linearly
decomposing the total strain ¢;; into elastic (¢), creep (&), plastic (¢{?")
and thermal (s}jT’) components and then using separate constitutive
descriptions for each of these components. Thus

;=69 +e+ef+e) (2.1)
Hooke’s law is used to relate the elastic strains and stresses o,

(e) 1 {

e . (1 +v)o;;—v0,,90,;} 2.2)
where E is the Young’s modulus, v is the Poisson’s ratio, J,; is the
Kronecker delta and the summation convention is used over the re-
peated index k. The thermal strain is generally written as

el'=aTJ,; (2.3)

in terms of the temperature (above some base temperature) 7 and the
coefficient of linear thermal expansion a. The plastic strain is generally
described in terms of a yield criterion, flow rule and hardening law (see,
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