


MATRIX VECTOR
ANALYSIS

Richard L. Eisenman

DOVER PUBLICATIONS, INC.
Mineola, New York



Bibliographical Note

This Dover edition, first published in 2005, is an unabridged republi-
cation of the work originally published by McGraw-Hill Book Company,
Inc., New York, in 1963. For reasons of space, the section “Some
Historical Landmarks,” originally part of the front matter, has been
moved to page 290 in the present edition.

Library of Congress Cataloging-in-Publication Data

Eisenman, Richard, 1928
Matrix vector analysis / Richard L. Eisenman.
p. cm.
Originally published: New York : McGraw-Hill, 1963.
Includes bibliographical references and index.
ISBN 0-486-44181-4 (pbk.)
1. Vector analysis. 2. Matrices. I. Title.

QA261 .E4 2005
515'.63—dc22
2004061881

Manufactured in the United States of America
Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501



PREFACE

Vector analysis and linear algebra are often artificially separated.
This book blends matrix algebra with vector analysis. Matrix
ideas are applied to vector methods, and vector ideas are applied
to matrix methods. The formal matrix product

7
(a, b, ¢ (j) =ai + b+ ck

k

clarifies basis computations in Chap. I, derivatives with respect
to moving bases in Chap. II, vector field theory in Chap. III,
and vector operations in curvilinear coordinates in Chap. IV.
Then row-vector interpretations clarify concrete applications of
matrices to coding messages, algebraic equations, differential
equations, linear transformations, eigenvalues, quadratic forms,
and finite Markov chains in Chap. V. Matrix and vector con-
cepts jointly lead to practical generalizations in group theory,
linear spaces, function spaces, and n-dimensional spaces in
Chap. VI. A blend of matrices and vectors is a natural prepa-
ration for tensor analysis. The excellent paperback “An Intro-
duction to Tensor Analysis” by Professor H. D. Block is
especially recommended.
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iv | Preface

The interplay of linear algebra and. vector analysis is part of
an attempt to dispel broader unnatural barriers between “pure”
and “applied” mathematics. The attitude of this mathematics
book has been influenced but not dictated by the constructive
ideas of good engineers, including a formal opinion poll about
applicable mathematics. Physical ideas are used freely to
illustrate and motivate mathematical concepts, but the con-
tinuity of development is mathematical rather than physical.
A fairly serious attempt is made to answer “What good is it?”
while avoiding name-dropping.

The presentation is reasonably flexible. For an undergraduate
three-semester-hour course in classical vector analysis, one might
use Chaps. I through IV and either V or VI; perhaps both V
and VI if the students have met vectors in elementary calculus.
For an undergraduate linear-algebra course one might use Chaps.
I, V, and VI and spend some time in creative laboratory sessions
with the problem sets. Chapter I or Chap. V (except Sec. 5.5)
might be used in the last semester of high school. The book
may be useful as a supplement to formal courses or for review
or self-study in advanced calculus, vector analysis, linear algebra,
or tensor analysis. '

Exercises are sprinkled within each section to encourage con--
tinuous understanding of fundamentals. Rather extensive prob-.
lem sets at chapter ends demand enthusiasm but not genius.
Mental exercises at chapter ends are intended for oral discussion
or examination. At the end of the book the answer is given to
each question for which a unique and short answer is possible.
Such questions are indicated by bracketed numbers in the body
of the book.

The encouragement and constructive criticism of M. E.
Eisenman, R. C. Rounding, J. W. Ault, D. R. Barr, J. B. Mac-
Wherter, R. P. Yantis, W. Rollins, R. E. Thomas, N. Starr, and
G. S. Young were requisite. It is clear that they are neither
individually nor collectively responsible for shortcomings. Fur-
ther criticism of this modest attempt to share ideas with growing
minds will be most welcome.

Richard L. Eisenman
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chapter I | STATIC VECTORS IN 3 - SPACE

In this chapter you will enlarge your mathematical vocabulary
by learning to manipulate in the arithmetic and algebra of vectors
(as opposed to vector calculus).

1.1 | VECTORS AND EQUALITY

Professor J. Willard Gibbs of Yale published the first pamphlet
on “Elements of Vector Analysis’’ about 15 years after the Civil
War. The world was then ripe for a new language and new
concepts to embody physical ideas. The notation of vector
language has an inherent mechanical advantage, but you will
profit even more from the vector concept than from the vector
notation.

Young students are thoroughly indoctrinated in a narrow ave-
nue of arithmetic elements in the real and complex numbers.
The vector concept embodies elements of a more general nature,
suitable for blending such global ideas as physical forces, solu-
tions of algebraic equations, and spacial geometry to their mutual
benefit.

You are invited to learn about vectors by doing.
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The elements we call three-dimensional vectors are represented
as directed line segments in usual three-dimensional space. The
elementary geometry of length, angle, and line segment is pre-
sumed known and will provide the setting for.the ideas to be
explored in this applied vector space. A directed line segment
simply has one end picked as tail and the other as head. '

One and the same directed line segment or vector may repre-
sent the force of a boxer’s punch, an arrow, a motion of space
(from tail to tip) (it is in this context that the dictionary defini-
tion of a vector as a ‘“‘carrier’”” makes sense), the point at the tip
of the vector when its tail is bound at the origin, the trio of num-
bers (0, 1, 2) which satisfies the algebraic equationz + y + z = 3,
or the moment of a physical force. When you study this one
vector, you are efficiently studying all these interpretations at
the same time, focusing your attention on the properties of
greatest concern which all the interpretations enjoy in common.

It is important to know how to distinguish between vectors
which are ‘“different’”’” and to decide under what circumstances
two vectors are indistinguishable or equal for our purposes.
There are three important ways to classify vectors.

Definition: (Free) vectors are directed line segments which are
called equal iff they have the same length and the same direction
(iff means “if and only if”’). A vector of zero length will be
considered to have every direction, much as the number zero
may be considered both positive and negative.

Bound vectors are directed line segments which are called equal
iff they have the same length, direction, and starting point.

Sliding vectors are directed line segments which are called equal
iff they have the same length and direction, and the heads and
tails of both lie on a common line.

Conventions: Vector elements will be denoted by letters with over-
scores; for example, A, V, ¢, and 7 indicate vector elements. The
symbol ¢ will be reserved exclusively for the vector of zero length,
and lowercase letters for vectors whose length is known to be one
unit: so-called unit vectors.

Other notations are bars, arrows, circumflexes, tildas, etc.,
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over or under the letter. (Many texts simply use boldface
type, which cannot be easily mimicked by the working student.)
The student who carefully distinguishes between a vector and a
scalar and never confuses the two earns an 4 in a vector course.
(Is that grade a vector, or is it a scalar?)

SN

As (free) vectors: OA = @ = ¥, !
As bound vectors: OA = @, but @ = 9, and ¥ 1.

Example:

EXERCISE [1]: Which of the
vectors in the diagram are

equal? e tf
a. As vectors (i.e., free vectors). /Z'B ¢ _D_/
b. As bound vectors. ot —~

c. As sliding vectors.

EXERCISE [2]: Which of the following have representations as vectors?
a. Weight; b. Specific heat; ¢. Momentum; d. Energy; e. Speed; f.
Velocity; g. Magnetic field intensity; h. Gravitational force; i. Kinetic
energy; j. Age; k. Flux.

EXERCISE 3: Represent each of the following as a directed line segment:
a. The displacements of the moon from the center of the earth, from the Air
Force Academy, and from the center of the sun (all in one figure)
b. A force of 1,000 1b on a satellite toward the center of the earth

1.2 | VECTOR SUM AND VECTOR PRODUCT

Vectors are of little value until you put them to work combining
with each other to form new vectors. It is important to remem-
ber that we are considering free vectors. When a vector is
transported parallel with itself, it remains the same vector,
much as you are the same person when you take a walk. Unlike
you, however, a vector may not change its direction or its length
without becoming a new object. One natural way to combine
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two vectors to produce a new one is motivated by the physical
idea of resultant or “sum.”

Definition: Triangle sum. The sum of two vectors A and B,
indicated by A + B, is the vector obtained by placing the tail
of the second at the tip of the first and joining the tail of the
first and the tip of the second.

Graphically:
‘E\

B

|
-+
|

A

Physically, the “sum” is the resultant whose formation is
known to be correct from experimental measures.

Geometrically, the “sum” is the shortcut from the tail of one
to the tip of the other.

Algebraically, we will discover that this “sum’ is governed by
the same rules as the sum of numbers.

Example:

A+B=FE And A4+ C = A + B, since B and C are the
A + D = ¢, the vector of zero length. We write D= —A.
N=F+4+G P=H+1L,and R =P + M. Therefore,
E=N+R=@F+G6 +[(A+L)+ M
We may discard parentheses towrite B = F + G+ H+ L+ M.
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EXERCISE 4: From the definition of sum, all groupings by parentheses of
asum 4 + B + C + D are equal. For example, 4 + [B + (C + D)] =
(A + B) + (C + D). How many such groupings are possible?

EXERCISE 5: Another definition of the vector sum of A and B is the
directed diagonal of a parallelogram, two of whose sides are 4 and B joined
tail to tail. Show an example of this sum, and discuss whether or not
this parallelogram addition gives a vector equal to that given by triangle
addition.

EXERCISE 6: Discuss to what extent triangle sum is defined for bound
vectors. :

EXERCISE 7: An airplane travels 200 miles north and then 100 miles 60°
north of west. Determine the resultant displacement graphically.

EXERCISE 8: A satellite is acted upon by the forces shown. Determine
the force needed to keep the satellite from moving.

— A
Fy

Fs
s e

Fy
Y

EXERCISE 9: Determine the sums of the fields of vectors indicated:

S il et
N

7\ . —
@ ®) ©

The physical idea of the net effect of two forces motivated
the definition of sum of two vectors. We now consider a second
method of creating a vector from two given vectors. The phys-
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ical idea of moment about a point of a force whose tail has a
displacement from that point motivates the definition of cross
product or vector product.

Definitions: The cross product, denoted by A X B, is the vector
which protrudes perpendicular to the A, B plane on the side
that a right-handed screw would protrude if turned through
the smaller angle from A toward B; A X B has as its length
| Al ||B]| sin 6, where 6 is the angle between A and B. Here
|A]| denotes the length of A, and the angle between A and B
is the smaller angle (or =) when the free vectors are joined tail
to tail.

An ordered set of three vectors {4, B, C} is called a right-handed
set if C protrudes from the 4, B plane on the same side as a right-
handed screw turned through the angle between A and B.

Example:

Note that A X B = B X A.

Physically, A X B gives the moment of the bound force vector
B about the tail of A when the tail of B is at the tip of A. For
this interpretation, ||A|| sin 6 represents the moment arm, and B
has the magnitude and direction of the applied force. Note that
HA X BH tells how big the moment is, and the direction of
A X B specifies the plane of action, i. e., the plane perpendicular
to A X B.

Geometrically, A X B is normal to the 4, B plane, so that
A, B, and A X B form a right-handed set, and |4 X B|| gives
the area of the parallelogram which has the two sides A and B
joined tail to tail. Thus note that A X B = ¢ iff A and B are
parallel. This is an acid test of parallelism.
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It is important to realize that A X B contains a wealth of
information. For example, once it is known that 4 X B = 1.13,
where 7 is a unit vector extending perpendicularly upward from
the zz plane, one can conclude that:

1. A and B are parallel to the zz plane. (Note how the direc-
tion of A X B specifies the plane formed by 4 and B.)

2. The parallelogram formed by A and B has area 1.1.

Algebraically, although A X B looks like a product, it does not
obey all the laws of products of real numbers. For this reason,
it is very important to examine those fundamental laws which
each of the vector operations + and X do obey.

There are certain accepted names for the basic computational
laws which are enjoyed by some (but not all) operations:

Definition: A system with the operation, o, for combining pairs
of elements to produce one new element is said to satisfy the
law of:

Closure iff A o B always produces an element in the collection
(An answer can always be found within the system)

Associativity iff, always, Ao (Beo(C) = (Ao B)oC (Paren-
theses may be discarded)

Identity iff there is an I such that Aol =10 A = A for
each A

Inverse iff each element A has a companion A such that
AocA=T=4A-4

Commutativity iff, always, Ao B = Bo A

Proposition: In three dimensions vector addition, -+, is closed,
associative, commutative, and has an identity and inverses.

Vector cross product, X, s closed but not associative, not com-
mutative, and does not have an identity or inverses.

(To prove a law does hold, we have to refer to the definitions
to show that it follows regardless of the choice of elements; to
show that a law does not hold, we have to find one particular
choice of elements for which it fails, and that choice is called a
counterexample or “gegenbeispiel.”)
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Proof: Addition is closed, because two free vectors may always
be placed tail to head, and there is then a unique arrow
sum.

Addition is associative, i.e., A + (B+ C) = (4 + B) + C,
because from the definition of trlangle addition each expressmn
gives the segment from the tail of A to the tip of C.

Addition is commutative, for by properties of parallel lines
the segment from the tail of 11 to the tip of B has the same direc-
tion and magnitude as the segment from the tail of B to the tip
of A. (Construct a figure for yourself.)

Addition has an identity, namely, the null or zero vector
A+¢=¢+4=A4. ) -

Addition has an inverse for each 4, namely, —A.

A+(-H=(-DH+4d=4

Cross product is closed, for there is a unique perpendicular to
the A, B plane having the prescribed length and direction.

Cross product is not associative. As a counterexample, take
A and B at a 30° angle in the plane of this page and C protruding
from the page at 90°. Then A X (B X () will be perpendicular
to this page, since B X C is on the page; but (4 X B) X C will
be ¢ since A X B is perpendicular to this page and thus parallel
to C. (Of course this is not the only possible counterexample,
but one failure is enough to ruin the general rule.)

Cross product is not commutative, for if nonparallel A and B
are on this page, A X B will protrude from one side, while B X 4
protrudes from the other. Note, however, that cross product is
anticommutative, that is, A X B = —B X A.

Cross product does not have an identity I such that

AXI=A4

for if it did, A would have to be perpendicular to itself. Without
an identity inverses do not make sense as we defined them.

EXERCISE [10]: If {4, 9, %} is a right-handed set, which of the following

sets is right-handed: 4, @, #; 5, W, 4; 9, 4, ©@; W, 4, 9; 0, 0, &7



1.3 | Scalar Multiplication and Linear Dependence | 9

EXERCISE 11: Show the moment of each force in the diagram about the
point P.

Fy

F, lfa

EXERCISE 12: Write at least five identities which hold if the elements
are real numbers and “X’’ stands for multiplication, but which do not hold
if the elements are vectors and ‘X’ stands for vector cross product.

e

1.3 | SCALAR MULTIPLICATION
AND LINEAR DEPENDENCE

As a special case of sum, A + 4 is a new vector which is naturally
called 24. More generally, we can always alter the length of a
vector while retaining its direction, simply by multiplying the
original length by some real number. This process is called
scalar multiplication.

Definition: The scalar multiple aA is a vector parallel to 4, has
length |a| ||4]|, and is directed along or opposite A according as
a is a positive or a negative real number.

Example:
/ // )(/__ 2
Since A + (—1)A = ¢, we have a natural definition of
subtraction:

Definition: 4 — B = 4 + (—1)B

Scalar multiplication is not quite like multiplication of num-
bers, because two different kinds of objects are involved. A
scalar (real number) operates on a vector to produce a new veetor.
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Thus scalars, which are not elements in the space of vectors,
do operate on vectors, and one speaks of “the scalar operators.”

Proposition: Scalars are linear operators in the sense that (1)
a(A + B) = aA + aB and (2) a(bA) = b(ad).

Proof: Since the triangles indicated are similar, a4 + aB has
the same magnitude and the same direction as a(4d + B).

Property 2 follows from the definition.

EXERCISE 13: Prove: (a +b)A = aA + bA. Do the signs “+” refer
to adding numbers or to adding vectors?

EXERCISE [14]: Discuss the significance of ||A|-'4A. (What is its
length?)

EXERCISE 156: ||4|| behaves somewhat like the absolute value of a real
number.

a. Demonstrate that ||| + ||B] = |4 + Bl = | 4]l — IIB] |.

[b] Considering ||4| as a function from vectors to scalars, describe the
domain and the range of the function.

EXERCISE 16: Consider a vector T which goes from left to right on the
top edge of this piece of paper.

a. Describe — T verbally.

b. In order not to destroy this free vector, how would you have to carry this
book ?

Lc] Which of the vectors—from left to middle or from middle to right—is
equal to 147?

EXERCISE [17]: Write an algebraic expression which describes every
vector parallel to the vector k.



