Mary Ann
CUNNINGHAM William P. CUNNINGHAM PRINCIPLES OF

Environmental Science

INQUIRY & APPLICATIONS

Third Edition

PRINCIPLES OF Environmental Science

PRINCIPLES OF ENVIRONMENTAL SCIENCE: INQUIRY AND APPLICATIONS THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2006, 2004, 2002 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

234567890 OPD/OPD 098765

ISBN 0-07-282339-9

Publisher: Margaret J. Kemp

Senior Developmental Editor: *Donna Nemmers* Freelance Developmental Editor: *Brian S. Loehr*

Marketing Manager: Tami Petsche
Project Manager: April R. Southwood
Senior Production Supervisor: Laura Fuller
Senior Media Project Manager: Jodi K. Banowetz
Senior Media Technology Producer: Jeffry Schmitt

Designer: Rick D. Noel

Cover/Interior Designer: Jamie E. O'Neal

(USE) Cover Image: © Getty Images, Worker Standing on Wind Turbine, Billy Hustace

Senior Photo Research Coordinator: Lori Hancock

Supplement Producer: Brenda A. Ernzen Compositor: Precision Graphics Typeface: 10/12 Times Roman Printer: Quebecor World Dubuque, IA

The credits section for this book begins on page 399 and is considered an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

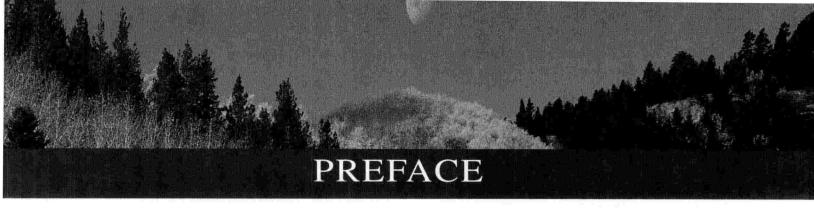
Cunningham, William P.

Principles of environmental science: inquiry and applications / William P. Cunningham, Mary Ann Cunningham. — 3rd ed.

p. cm.

Includes index.

ISBN 0-07-282339-9 (acid-free paper)


1. Environmental sciences—Textbooks. I. Cunningham, Mary Ann. II. Title.

GE105.C865 2006

363.7dc-22

2004024617

CIP

Can we learn to live sustainably on this planet, drawing only on nature's surplus and protecting the ecological processes on which life depends, while still providing a healthy, fulfilling life for everyone? This dilemma lies at the heart of environmental science.

Recent progress in environmental protection and improved human welfare gives us hope for reaching the goal of meeting urgent human needs while still preserving the earth's fragile lifesupport systems. Chlorofluorocarbon (CFC) releases into the atmosphere have decreased dramatically since the passage of the 1987 Montreal Protocol, for example, and destruction of UVabsorbing stratospheric ozone appears to be slowing. Similarly, clean air regulations have reduced sulfur dioxide emissions over North America by 31 percent over the past two decades. In many areas, acid precipitation, which threatened forests, crops, and aquatic ecosystems, has lessened. Currently, some 16.3 million km² (about 11 percent of the world land area) is protected in parks and nature preserves. Over the past 20 years, the average number of children born per woman worldwide has dropped nearly by half, and demographers predict that world population will stabilize by the middle of this century.

Still, many problems remain. Increasingly, we see evidence that human-caused global climate change is already underway. Biodiversity losses appear to be occurring at rates unmatched since the demise of the dinosaurs 65 million years ago. Hydrologists predict that, in a few decades, three-quarters of all humans will live in countries where freshwater supplies are inadequate to meet demand. Water wars could become a major source of conflict in the future. Bioconcentration of mercury and other toxins in food webs is a growing concern, not only in industrialized countries but even in remote areas where long-range transport of air pollutants can result in contamination problems. Currently, more than 800 million people are chronically undernourished, and more than 1.2 billion don't have enough money to provide the clean drinking water, shelter, medicine, sanitation, and education needed for a healthy, productive life.

Good science is needed to provide answers for solving these problems, but we also need an educated public that understands how science works and how to evaluate the difficult trade-offs we face. A broad-based environmental science course is an excellent way to teach a wide range of students about both scientific and social issues. It can show how valid information is gathered and analyzed, as well as how to think critically and creatively about complex issues. Many instructors have asked for a textbook that gives students a strong foundation in the basic principles of environmental science. We understand and agree with that goal.

This book provides a solid foundation in scientific approaches to environmental problems and solutions. We integrate information from a wide range of disciplines from both the natural and social sciences. And we attempt to present a **balanced**, **objective perspective** that presents both sides of controversial issues. While much current environmental news is discouraging, we also present positive examples in which progress toward sustainability is being made. We also suggest ways that individuals can contribute to environmental protection and resource conservation. Although this book is suitable for nonscience majors, you will find that it isn't simplistic or condescending. The presentation, while condensed, remains sophisticated and discerning.

CONCISE AND AFFORDABLE

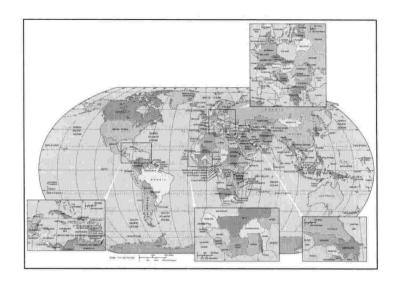
In recent years, environmental science textbooks have gotten bigger, more encyclopedic, and increasingly expensive. Both instructors and students call for a concise and affordable text. This book was written to fill that need. Rather than the 25 to 30 chapters found in most environmental science textbooks, we've limited this book to 15 chapters, or about 1 chapter per week for a typical semester course. The more concise presentation focuses on key principles, on scientific methods and ideas, and on life-long learning skills for students. We have also included enough case studies and current events to provide the real-world context for the themes discussed here. Additional case studies and current issues are also available on the book's website to help enrich your course's content. At the same time, the moderate size and price of this book should allow you to add supplementary materials to meet your individual teaching/learning objectives.

The outline of this book follows a topic sequence widely used in many environmental science textbooks and courses, but we know that many instructors choose to organize their courses around their own outlines. We've written each chapter in a way that doesn't assume that students have already read other chapters

in any particular order. If instructors prefer a different organization of course topics, chapters can be presented in any order that suits their course's needs.

ACTIVE LEARNING AND CRITICAL THINKING

Learning how scientists approach problems can help students develop habits of independent, orderly, and objective thought. But it takes active involvement to master these skills. Throughout this book, we encourage students to practice thinking for themselves. Data and interpretations aren't presented as immutable truths but, rather, as evidence to be examined and tested. We try to give a balanced view of controversial topics. Orderly, critical assessment of complex problems is a key part of **scientific literacy**, which is essential for understanding current environmental science. In every chapter, students are invited to practice **critical thinking** and to apply new ideas. We also include case studies demonstrating how scientists have thought about important environmental questions.


Because we think a discouraged student is unlikely to take positive action toward sustainability, we also strive to avoid "gloom and doom" or "shame and blame" attitudes. Instead, we adopt a thoughtful but cautiously optimistic view that will encourage readers to look for ways that we can solve problems and make our world a better place in which to live. In nearly every chapter, we include "What Can You Do?" boxes that give practical suggestions for things individuals can do to make a difference. Most chapters also have short applications boxes that invite readers to stop for a moment and practice using the principles they've learned.

An introductory story at the beginning of each chapter illustrates an important current issue and relates it to practical environmental concerns. These stories also start the process of exploring how scientists study complex issues. In addition to these introductory stories, case studies and examples of how scientists investigate our environment appear periodically throughout the book to remind readers about the practical importance of these issues.

INTEGRATION AND SUSTAINABILITY

Environmental problems and their solutions occur at the intersection of natural systems and the human systems that manipulate the natural world. In this book, we present an **integrated approach** to physical sciences—biology, ecology, geology, air and water resources—and to human systems that affect nature—food and agriculture, population growth, urbanization, environmental health, resource economics, and policy. Although it is tempting to emphasize purely natural systems, we feel that students can never understand why coral reefs are threatened or why tropical forests are being cut down if they don't know something about the cultural, economic, and political forces that shape our decisions.

This integrated approach is essential if we are to work toward sustainable solutions in our environment. Throughout the book, we present **sustainability** as an ultimate goal for both preserving nature and improving the lives of people everywhere. Sustainability implies that human well-being and environmental health need to be complementary, not contradictory, efforts. The goal of sustainability also requires a global view. We take a **global perspective** in this book because we believe that the most important and difficult environmental problems we now face involve worldwide resources and international institutions. To help students gain geographical literacy, we have included many maps and international case studies in this book, including a valuable set of world maps in the appendices.

CURRENCY

Throughout this book, we present up-to-date tables and graphs with the most current available data. We hope these data will give students an appreciation of the kinds of information available in environmental science. Among the sources we have called upon here are geographic information systems (GIS) data and maps, current census and population data, international news and data sources, and federal data-collection agencies.

This text has had the benefit of input from more than 400 researchers, professionals, and instructors who have reviewed this book or our larger text, *Environmental Science: A Global Concern*. These reviewers have helped us keep the text current and focused. We deeply appreciate their many helpful suggestions and comments.

WEB-ENHANCEMENT

The World Wide Web has become a vast and valuable resource for students. You can find a wealth of information there to update or supplement topics in environmental science. We incorporate this resource more fully in this text than in any other environmental science book currently available. Every chapter opens with a list of **web-based resources** that relate to and enrich the chapter contents. We have also placed further readings and extra case studies on the Web and have referenced these readings in the text. We encourage instructors to make use of these additional resources. At

the end of each chapter, a **web-based exercise** invites students to visit specific webpages and use the data found there to create graphs, make comparisons, or do some other practical analysis of real data. These aren't simplistic exercises that just ask the reader to look at a site and report on what it contains. Rather, we ask the student to explore these resources and use the information they find in pragmatic ways. Note that these exercises are just a beginning: instructors and students can modify or add to these exercises if they wish. One of our objectives in these exercises is simply to expose students to important data sources. Another objective in these exercises is to make students work with data, create graphs, map data, and experience some of the ways that scientists create and share information today.

LEARNING TOOLS

This book is intentionally written in a **lively, accessible style** and illustrated with nearly 400 full-color photographs and figures that help explain important concepts. We have also integrated a number of learning tools to help students gain an informed, thoughtful view of our environment:

"Investigating Our Environment" essays. These examples
give students some experience with tools and approaches
scientists use to solve contemporary environmental problems. Each boxed essay shows how scientists work to solve
complex environmental questions.

 Study aids. Each chapter opens with a list of objectives that summarize the main points of the chapter. These objectives are written in active terms that suggest to the student that it requires active involvement on their part to learn environmental science. Notice that, while some objectives call for simple, concrete thinking skills, others are deliberately aimed at higher cognitive levels to encourage students to think reflectively, analytically, and critically. Although asking students to analyze, understand, explore, or question don't have simple, clear endpoints that can be measured objectively, we believe it's important to point out the need for higher-level thinking about complex issues. Every chapter ends with a summary of main points, a list of key terms, and review questions that help the student review material and prepare for tests.

- Scientific thinking. A more challenging, open-ended set of
 questions titled "Thinking Scientifically" encourages students to think more deeply and independently about issues
 and principles presented in the chapter. These questions
 make excellent starting points for discussion sections. They
 also could be used to practice for essay exams or might even
 serve as an essay exam themselves.
- Statistics, graphs, and data. Knowing that many students have
 little background in math, we've included special features on
 statistical methods and how they apply to environmental science, as well as discussion of how graphs can be used to present data. To give students practice in graphing, several
 end-of-chapter web exercises include graphing exercises.
- Applications. Because few of us learn effectively without an
 opportunity to actively apply new ideas, we have included
 application boxes. These boxes provide a break in reading

the text and invite students to practice or apply skills they have just learned. In addition, "What Can You Do?" boxes in nearly every chapter suggest practical things that individuals can do to help improve environmental quality and resource conservation.

Developing a Sense for Where You Live

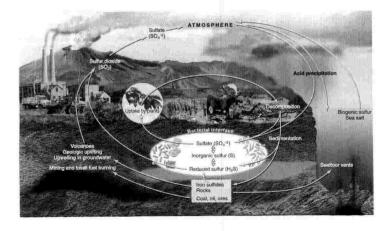
One of the first steps toward conserving biological diversity is to educate yourself. The more you know, the more you can share your knowledge—and skills—to help the natural world. Look for answers to questions such as these:

- What ecosystems and biological communities existed in your area before European settlement?
- What impact, if any, did indigenous people have on the flora and fauna of your area?
- What are the dominant species (besides humans) in your neighborhood? Where did they originate?
- How much rain falls in your region each year? Is precipitation seasonal? Is water a limiting factor for biological communities?
- What are the seasonal high and low temperatures where you live?
 How do native plants and animals adapt to seasonal variations?
- Is there a keystone species or group of species especially important in determining the structure and functions of your local ecosystems? What factors might threaten those keystone components?
- tems? What factors might threaten those keystone components?

 Where do your drinking water, food, and energy come from? What local and regional environmental impacts are caused by production, use, and disposal of those resources? Could you lessen those impacts by changing your sources or use patterns of resources?
- Is there a park or wildlife refuge near where you live? Does it con tain any rare, threatened, or endangered species? What makes then rare, threatened, or endangered?
- Are there opportunities for volunteer work to improve your local environment, such as planting native species, cleaning up a river or lake, restoring a wetland, recycling trash, or helping maintain a refuge or park?

 Web exercises. The World Wide Web has become an extremely important source of current data, but many students know little about the kinds of information available or the agencies and organizations that produce it. Our web

Preface xiii


- exercises make use of current data and ask students to perform activities such as graphing data, comparing maps, and using live GIS sources to learn about environmental issues and information sources.
- Maps and appendices. The appendices include conversion factors for weights and measures in an easy-to-locate position on the inside back cover. A new and expanded set of maps serves as a reference for the whole book and should help students expand their geographical knowledge and global perspective. The glossary defines all key terms as well as other important vocabulary words. A list of further readings will be posted on the webpage, where it can be updated periodically.

NEW FEATURES IN THIS EDITION

Updated Art Program

We are fortunate to have a collection of beautiful, threedimensional, photo-realistic drawings by Kandis Elliott, of the University of Wisconsin, that illustrate ecological cycles and relationships in a more realistic and recognizable style to help students understand important environmental principles. More than 50 new or revised graphs, drawings, and other graphics (about 200 in total) provide valuable information as well as making the text attractive and highly readable. Additional maps

have been added to give students an understanding of geography, including small place maps to locate major world biomes. In addition, 10 new tables allow readers to compare and understand data in greater depth than provided by straight text. A fold-out world map is included at the end of the book as additional reference for political and physical world regions.

New Photographs

We believe that students benefit from seeing photographs of people and nature in actual settings. For students who may rarely get outdoors and whose primary contact with the world around them is the computer screen or TV, photographs can add interest and authenticity to their study of environmental science. While other textbooks in this area have reduced or eliminated photographs from their texts, we continue to use high-quality photographs. Roughly half of our 406 figures are photographs, and approximately half of those are new for this edition. We are fortunate to have access to the outstanding photography of Dr. Barry Barker of Nova Southeastern University and David L. Hansen of the University of Minnesota Agricultural Experiment Station, whose works are prominently featured in this edition.

Updated Information

Much has happened in environmental science since the second edition of this text. Every chapter has been updated with new information.

- · Chapter One has an entirely new section on current environmental conditions.
- · Following reviewers' suggestions, we've moved the Periodic Table of Elements to the appendix, where it's still available for those who are interested but doesn't disrupt information flow for those who don't use it.
- · In chapter 4, new data on human populations and recent advances in birth control have been added.
- · Chapter 5 has undergone extensive reorganization, with a new section on marine ecosystems.
- The discussion of threats to biodiversity in chapter 5 also has been reorganized around E. O. Wilson's acronym HIPPO.
- · In one of the most dramatic changes in environmental science in recent years, the WHO documents a shift in the most important health threats worldwide from infectious diseases to chronic conditions such as obesity, depression, trauma, and cardiovascular diseases once thought to be limited to the richest countries. As Western lifestyles spread to developing countries, however, the diseases of affluence have become the leading causes of death and morbidity nearly everywhere. Chapter 8 has been rewritten to reflect this new reality.
- Chapter 9 contains a wealth of new information on global climate change together with a discussion of clean air controversies in the United States.

- Chapter 10 incorporates updated data on water quality, water shortages, and water pollution, including the terrible problem of arsenic poisoning of groundwater in South Asia.
- The expert advice of Dr. John Pratt has guided revisions to chapters 11 and 12, and these chapters are strengthened and improved by his suggestions.

Many other chapters also have new data and features that we don't have room to detail here. Altogether, we believe you'll find this edition the most up-to-date of any textbook currently on the market.

GIS and Remote Sensing

Drawing on Mary Ann Cunningham's expertise in the areas of GIS, remote sensing, and biogeography, we have added several boxed readings to explain these important techniques and to show how they can be used in environmental science.

New Case Studies, Opening Stories, and Other Special Readings

Every chapter starts with an opening vignette, which presents a fascinating current environmental problem that illustrates the principles to be presented in the text. Interspersed throughout each chapter are other special features that show concrete application of theoretical knowledge. Ranging from controversy over dredging PCBs from the Hudson River to the threat of bioterrorism, these special readings also provide an opportunity to bring up current events and to make connections to real-life issues. Of the 30 special readings in the book, 16 are new to this edition, making the text thoroughly up-to-date and relevant.

A fter the Islamic Revolution in 1979, Iran had one of the world's highest population growth rates. In spite of civil war, large-scale emigration, and economic assetsity, the country surged from 34 million to 63 million in just 20 years. A crude birth rate of 43.4 per 1,000 people and a total fertility rate of 5.1 per woman during this time resulted in an annual population growth of 3.9 percent and a doubling time of Jess than 18 years. Religious sunthorities exhorted couples to have as many children as Allah would give them. Any mention of birth control or family planning (other than to have as many children as possible) was forbidden, and the marriage for girls was dropped to 9 years old. When a devastating war with Iraq in the 1980s killed at least I million young soldiers, producing more children to rebuild the army became a civic as well as religious duty.

as retigious only.

In the late 1990s, however, the
Iranian groverment became aware of the
costs of such rapid population growth.
With religious moderates gaining greater
political power, public policy changed
abruptly. Now the Iranian government is
spending millions of dollars to lower

birth rates. Couples most pace a national family planning course before they are allowed to marry. While it took a few years to convince people that this change will be long-learning, most frastant citizens are now eager for access to birth courts information. Family planning classes are sought out both by engaged couples and those already married. A wide range of birth control methods are available. Implantable or injectable slow-release hormones, condoms, intrauterine devices hormones, condoms, intrauterine devices hormones, condoms, intrauterine devices persent per

As a consequence, Iran has been ensurfashly successful in stemming its population growth. Between 1986 and 1996 the fertility raise for urban residents dropped almost by balf, to less than trace children per women, and the crude binh race dropped from 43 to 18 per 1,000 people. By 2000 the average annual growth rate had fallen to 1.4 percent. While the population is still increasing, another elecated of such progress would bring the

country to a stable or even declining rate

of growth.

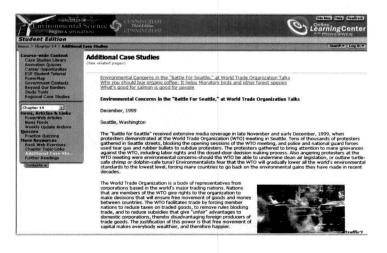
Several societal changes have contributed to this rapid birth reduction. While the minimum marriage age has been returned to 15, couples are encouraged to wait until at least age 20 to begin their families. The educational benetits of concentrating the family resources on just one or two children are being primoted. Although women's roles are still highly sestrated in the Islamic Republic, greater gender equity has given women more countrol over their reproductive lives. Access to modern, information—age jobs gives people an incensive to seek out education both for themselves and for their children.

The demographic transition hasn't spread to all levels of frantan society, however, Rural families, ethnic minorities, and some urban poor still tend to have many childran. Still, this example of how quickly both ideals of the perfect family size and information about modern birth control can spread through a society—even a highly religious, fundamentalist one—is encouraging for what might be accomplished worldwide in a supressingly short time.

Suggested Readings

Our Online Learning Center website has an extensive list of more than 2,500 annotated citations to important environmental articles. We know, however, that few students take the time to investigate this database, so we've added a short list of suggested readings to each chapter to show important data sources and current directions in science.

LET US KNOW WHAT YOU THINK


We'd appreciate hearing from both students and instructors about where—and how—we could improve this text. You, the users, are the real test of whether we have accomplished our goal of presenting the principles of environmental science in an engaging and understandable way. Please let us know what you think. We value your comments and suggestions. Please send your recommendations to the Integrative Biology Division of McGraw-Hill, 2460 Kerper Blvd., Dubuque, IA, 52001.

USEFUL SUPPLEMENTS

- Digital Content Manager (DCM) CD-ROM. This multimedia collection of visual resources allows instructors to utilize artwork from the text in multiple formats to create customized classroom presentations, visually based tests and/or quizzes, dynamic course website content, and attractive printed support materials. The digital assets on this cross-platform CD-ROM are grouped within the following easy-to-use folders:
 - Illustrations and photos. All of the line drawings from the text and hundreds of photos are in ready-to-use digital files.
 - PowerPoint lecture outline. Ready-made presentations combine art from the text with customized, instructorwritten lecture notes, covering all 15 chapters.
 - Tables. Every table that appears in the text is provided in electronic form.
 - Active art. These special art pieces consist of key images from the text that are converted to a format that allows instructors to break the art down into core elements and then group the various pieces and create customized

- images. This is especially helpful with difficult concepts; they can be presented step-by-step.
- Animations. Numerous full-color animations illustrating many different concepts covered in the study of environmental science are provided. The visual impact of motion will enhance classroom presentations and increase comprehension.
- Additional photo library. Over 400 full-color photographs additional to those already in the textbook are included in the Digital Content Manager. These photos are specific to environmental science topics, and are searchable by content.
- Instructor's Testing and Resource CD-ROM. This cross-platform CD-ROM provides a wealth of resources for the instructor. Supplements featured on this CD-ROM include lab activities, and a computerized test bank to quickly create customized exams. This user-friendly program allows instructors to search for questions by format, edit existing questions or add new ones, and scramble questions and answer keys for multiple versions of the same test. Other assets on the Instructor's Testing and Resource CD-ROM are grouped within easy-to-use folders.
- Transparencies. A set of 100 transparencies is available to users of the text. These acetates include key figures from the text, including new art from this edition.
- Interactive World Issues CD-ROM. This CD explores environmental issues that affect various geographic regions. For example, you'll visit Oregon and investigate water rights of the Columbia River. Listen to Native Americans whose living depends on salmon fishing and then to the farmers who need water to irrigate their crops. Additional case studies discuss migration in Mexico, apartheid in South Africa, population issues in China, and farming in urban Chicago.
- Online Learning Center. (http://www.mhhe.com/ cunningham3e). This comprehensive website offers numerous resources for both students and instructors.



Student Resources—Everything you need in one place

- · Practice quizzing
- · How-to study tips
- Web links to related topics
- · Web exercises
- · Guide to electronic research
- · Regional perspectives (case studies)
- · Environmental issues world map
- · Key term flashcards
- · How to write a paper
- · How to contact your elected officials
- · Further readings
- · Metric equivalents and conversion tables
- Career information
- Access Science offering the advantage of an online, interactive encyclopedia

Instructor Resources—in addition to all of the above, you'll receive:

- · Supplements resource chart for each chapter
- · Answers to web exercises
- · Additional case studies
- · Answers to critical thinking questions
- PageOut (create your own course website)

New!! Exploring Environmental Solutions with GIS.
 This short book provides exercises for students and instructors who are new to GIS but are familiar with the Windows operating system. The exercises focus on improving analyt

ical skills, understanding spatial relationships, and understanding the nature and structure of environmental data. Because the software used is distributed free of charge, this text is appropriate for courses and schools that are not yet ready to commit to the expense and time involved in acquiring other GIS packages.

RELATED TITLES OF INTEREST

- Exploring Environmental Solutions with GIS (includes CD-ROM) (0-07-297744-2) by Stewart, Schneiderman, Cunningham, and Gold.
- 2. Field and Laboratory Activities Manual, 7th ed. (0-07-290913-7) by Enger and Smith.
- 3. Interactive World Issues: Of Place and Planet CD-ROM (0-07-255648-X), Cambridge Studios.
- Annual Editions: Environment 04/05 (0-07-286147-9).
 Editor: John L. Allen.
- Taking Sides: Clashing Views on Controversial Environmental Issues, revised 10th ed. (0-07-293317-8). Editors: Thomas Easton, Theodore D. Goldfarb.
- Sources: Notable Selections in Environmental Studies, 2nd ed. (0-07-303186-0). Editor: Theodore D. Goldfarb.
- The Dushkin Student Atlas of Environmental Issues (0-697-36520-4). Editor: John Allen. University of Connecticut.

ACKNOWLEDGMENTS

We're indebted to all the instructors who have reviewed the manuscript and made helpful suggestions, corrections, and recommendations for improving this book. Space does not permit inclusion of all the excellent ideas that were provided, but we will continue to do our best to incorporate the ideas that reviewers have given us. In addition, all of us owe a big debt to the many scholars whose work forms the basis of our understanding of environmental science. We stand on the shoulders of giants. If errors persist in spite of our best efforts to root them out, we accept responsibility.

We express our gratitude to the entire McGraw-Hill book team for their wonderful work in putting together this edition. Donna Nemmers and Brian Loehr oversaw the developmental stages and have made many creative contributions to this book. April Southwood, production project manager, kept everything running smoothly. Lori Hancock found excellent photographs. The folks at Precision Graphics did an excellent job of composition and page layout. Tami Petsche and Marge Kemp have supported this project with their enthusiasm and creative ideas.

The following individuals provided reviews for this book. We thank them for their suggestions.

Shannon A. Bliss

Cerro Coso Community College

Robert Buschbacher

University of Florida

Catherine W. Carter

Georgia Perimeter College

Richard Clements

Chattanooga State Technical Community College

Michael L. Denniston

Georgia Perimeter College

Laurie S. Eberhardt

Valparaiso University

Brad C. Fiero

Pima Community College

Steven P. Frysinger

James Madison University, Harrisonburg

Zofia E. Gagnon

Marist College

Carey A. Gazis

Central Washington University

Marcia L. Gillette

Indiana University, Kokomo

Daniel F. Gleason

Georgia Southern University

Lawrence J. Gray

Utah Valley State College

Mark F. Hammer

Wayne State College

Charles Kaminski

Middlesex Community College

Paul Kimball

Northeast Iowa Community College

Ned J. Knight

Linfield College

Jeff Kushner

James Madison University

Matthew Laposata

Kennesaw State University

Kurt M. Leuschner

College of the Desert

Edward M. Lignowski

Holy Family College

Les M. Lynn

Bergen Community College

Timothy F. Lyon

Ball State University

Janet S. MacFall

Elon University

Nancy Jean Mann Cuesta College

Ken R. Marion
University of Alabama, Birmingham

Thomas C. Moon

California University of Pennsylvania

Michele Morek

Brescia University

Michael J. Neilson
The University of Alabama, Birmingham

Pamela Pape-Lindstrom Everett Community College

David R. Perault

Lynchburg College

Ervand M. Peterson
Sonoma State University

Julie Phillips

De Anza College

Mark D. Plunkett

Bellevue Community College

John M. Pratte
Kennesaw State University

Carlton Lee Rockett

Bowling Green State University

Robert J. Sager Pierce College

Ronald L. Sass Rice University Jeffry A. Schneider SUNY-Oswego

Bruce A. Schulte

Georgia Southern University

Julie A. Seiter
Oakland Community College

Jill Singer
Buffalo State College

Denise L. Stetson

Johnson and Wales University

L. Harold Stevenson McNeese State University

Ronald C. Sundell
Northern Michigan University

John A. Tiedemann

Monmouth University

Michael Toscano
San Joaquin Delta College

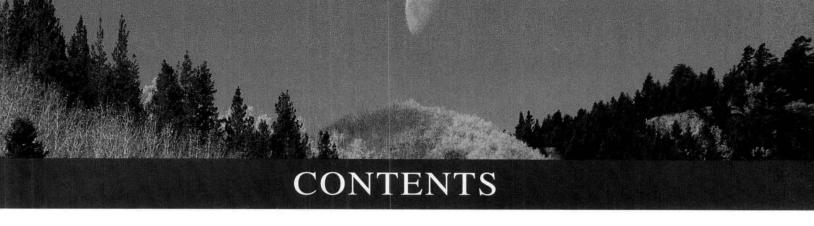
Edward R. Wells Wilson College

Arlene A. Westhoven Ferris State University

Ray E. Williams *Rio Hondo College*

Thomas B. Wilson University of Arizona

Bruce C. Wyman


McNeese State University

CONTENTS IN BRIEF

1	Understanding Our Environment 1
2	Principles of Ecology: Matter, Energy, and Life 25
3	Populations, Communities, and Species Interaction 48
4	Human Populations 74
5	Biomes and Biodiversity 95
6	Environmental Conservation: Forests, Grasslands, Parks, and Nature Preserves 124
7	Food and Agriculture 149

2	5	Environmental Health and Toxicology	175
(9	Air: Climate and Pollution 198	
1()	Water: Resources and Pollution 229	
11		Environmental Geology	
		and Earth Resources 259	
12	2	Energy 278	
13	3	Solid and Hazardous Waste 306	
14	4	Sustainability and Human Development	327
15	5	Environmental Science and Policy 352	ļ

Preface xi

Chapter 1 Understanding Our Environment				
Objectives 1				
Learning Online 1				
Dredging the Hudson River 2				
Understanding Our Environment 3 A Marvelous Planet 3 What Is Environmental Science? 4				
Science As a Way of Knowing 4 Cooperation and Insight in Science 5 Scientific Design 6 Deductive and Inductive Reasoning 6 Hypotheses and Theories 6 Modeling and Natural Experiments 7 Statistics and Probability 8				
Investigating Our Environment What Are Statistics, and Why Are They Important? 8				
Paradigms and Scientific Consensus 9 Pseudoscience and Baloney Detection 10				
Thinking About Thinking 10 Approaches to Knowledge and Meaning 11 Applying Critical Thinking 12				
Investigating Our Environment A Skeptical Environmentalist? 12				
Some Clues for "Unpacking" an Argument 13 Using Critical Thinking 13				
A Brief History of Conservation				
and Environmentalism 14 Historic Roots of Nature Protection 14 Pragmatic Resource Conservation 14 Moral and Aesthetic Nature Preservation 15 Modern Environmentalism 15 Global Concerns 16				
Current Environmental Conditions 16 Signs of Hope 18				
Human Dimensions of Environmental Science 19 Rich and Poor Countries 19 A Fair Share of Resources? 20 Sustainability 21				

Indigenous Peoples 21

Chapter 2

Principles of Ecology: Matter, Energy, and Life 25

Objectives 25
Learning Online 25
Measuring Energy Flows in Cedar Bog Lake 26

Principles of Matter and Energy 26

What Is Matter? 27
What Is Energy? 27
Thermodynamics and Energy Transfers 28

The Building Blocks of Earth and Life 28
Atoms, Molecules, and Compounds 28
Chemical Reactions 29
Acids and Bases 30
Organic Compounds 31
Cells: The Fundamental Units of Life 31
The Miracle of Water 32

Sunlight: Energy for Life 33 How Does Photosynthesis Capture Energy? 33

Investigating Our Environment Remote Sensing, Photosynthesis, and Material Cycles 35

Energy and Matter in the Environment 36
Food Chains, Food Webs, and Trophic Levels 36
Ecological Pyramids 38

Biogeochemical Cycles and Life Processes 38
The Hydrologic Cycle 38
The Carbon Cycle 39

The Nitrogen Cycle 40
The Phosphorus Cycle 43
The Sulfur Cycle 43

Investigating Our Environment Environmental Chemistry of Phosphorus 44

Chapter 3

Populations, Communities, and Species Interaction 48

Objectives 48
Learning Online 48
Darwin and the Theory of Evolution 49

Who Lives Where, and Why? 50
Critical Factors and Tolerance Limits 50

Evolution: Natural Selection and Adaptation 51 Speciation 51 The Taxonomic Naming System The Ecological Niche 53 What Are Weedy Species? 54	A Pessimistic View 87 A Social Justice View 87 Infant Mortality and Women's Rights 87 Family Planning and Fertility Control 88		
	Case Study Family Planning in Iran 89		
Species Interactions 55 Predation 55 Competition 56 Symbiosis 57	Traditional Fertility Control 89 Current Birth Control Methods 89 New Developments in Birth Control 90		
Defensive Mechanisms 57 Keystone Species 58	The Future of Human Populations 91		
Population Dynamics 59 Population Growth 59 Boom and Bust Population Cycles 60 Growth to a Stable Population 60 Limiting Factors 61 K-adapted and r-adapted Species 61	Chapter 5 Biomes and Biodiversity 95 Objectives 95 Learning Online 95 Coral Reefs Threatened 96		
Community Properties 62 Productivity 62 Abundance and Diversity 63	Terrestrial Biomes 96 Deserts 97 Grasslands: Prairies and Savannas 99		
What Can You Do? Developing a Sense for Where You Live 64	Tundra 99		
Complexity, Resilience, and Stability 64 Community Structure 64	Conifer Forests 100 Broad-Leaved Deciduous Forests 101		
Case Study Biodiversity and Stability 66 Edges and Boundaries 67	Mediterranean/Chaparral/Thorn Scrub 101 Tropical Moist Forests 102 Tropical Seasonal Forests 102		
Communities in Transition 68 Ecological Succession 68 Climax Communities or Individualistic Succession? 69 Introduced Species and Community Change 70	Marine Ecosystems 103 The Open Ocean 104 Coastal Regions: Reefs, Estuaries, Shoals, and Mangroves 104 Tidal Environments and Barrier Islands 105		
Chapter 4 Human Populations 74 Objectives 74	Freshwater Ecosystems 106 Lakes 106 Wetlands 106 Streams and Rivers 107		
Learning Online 74 A Billion People and Growing 75	Biodiversity 107 How Many Species Are There? 107		
Population Growth 75 Human Population History 76 Population Doubling Times 76	Biodiversity Hot Spots 108 How Do We Benefit From Biodiversity? 108		
Limits to Growth: Some Opposing Views Malthusian Checks on Population 77 Malthus and Marx Today 78	Food 108 Drugs and Medicines 109 Ecological Benefits 109 Aesthetic and Cultural Benefits 109		
Can Technology Make the World More Habitable? 78 Could More People Be Beneficial? 79	What Threatens Biodiversity? 110 Natural Causes of Extinction 110		
Human Demography 79 How Many of Us Are There? 79	Human-Caused Reductions in Biodiversity 110 Habitat Destruction 111 Fragmentation 111		
Investigating Our Environment Interpreting Graphs 80	Invasive Species 112		
Fertility and Birth Rates 81 Mortality and Death Rates 82 Life Span and Life Expectancy 82 Living Longer: Demographic Implications 83	Investigating Our Environment Using GIS to Protect Biodiversity 113 Pollution 114		
Population Growth: Opposing Factors 84 Pronatalist Pressures 84 Birth Reduction Pressures 85	Population 115 Overharvesting 115 Commercial Products and Live Specimens 116 Predator and Pest Control 117		
Demographic Transition 86 Development and Population 86 An Optimistic View 87	Endangered Species Management And Biodiversity Protection 117 Hunting and Fishing Laws 117		

What Can You Do? Don't Buy Endangered Species Products 117 The Endangered Species Act 118 Recovery Plans 118	Soil: A Renewable Resource 157 Soil Organisms 158 Soil Profiles 159
Reauthorizing the Endangered Species Act 120 Habitat Protection 120 International Wildlife Treaties 121	Soil Types 159 Ways We Use and Abuse Soil 159
	Land Resources 159 Land Degradation 160 Erosion: The Nature of the Problem 161
Chapter 6 Environmental Conservation: Forests, Grasslands, Parks, and Nature Preserves 124	Mechanisms of Erosion 161 Erosion Hot Spots 163
Objectives 124 Learning Online 124	Other Agricultural Resources 163 Water 163
Protecting Forests to Preserve Rain 125	Fertilizer 163 Energy 164 Pest Control 164
World Forests 126 Forest Distribution 126 Forest Products 127	New Crops and Genetic Engineering 165 The Green Revolution 165
Tropical Forests 128 Temperate Forests 130	What Can You Do? Reducing the Pesticides in Your Food 165
What Can You Do? Lowering Your Forest Impacts 130	Genetic Engineering 166 Pest Resistance and Weed Control 166 Is Genetic Engineering Safe? 167
Investigating Our Environment Forest Thinning and Salvage Logging 133	Sustainable Agriculture 168
Rangelands 134 Range Management 134 Rangelands in the United States 135 New Approaches to Ranching 135	Soil Conservation 168 Managing Topography 168 Providing Groundcover 169 Reduced Tillage 169
Parks and Nature Preserves 136 North American Parks 136	Case Study Shade-Grown Coffee and Cocoa 170 Low-Input Sustainable Agriculture 171
Park Problems 137 Wildlife Issues 138 Parks as Ecosystems 138	Chapter 8 Environmental Health and Toxicology 175
Case Study Reintroducing Wolves to Yellowstone 139	Objectives 175
World Parks And Preserves 140	Learning Online 175 The Cough Heard Round the World 176
Marine Preserves 141 Protecting Natural Heritage 141 Size and Design of Nature Preserves 141 Conservation and Economic Development 142 Indigenous Communities and Biosphere Reserves 143	Environmental Health 176 Global Disease Burden 176 Emergent and Infectious Diseases 178 Funding Health Care 180
What Can You Do? Being a Responsible Ecotourist 144	Ecological Diseases 180 Antibiotic and Pesticide Resistance 181
Wilderness Areas 144	Diet 182
Wildlife Refuges 145	Toxicology 182
International Wildlife Preserves 145	What Can You Do? Tips for Staying Healthy 183 Endocrine Hormone Disrupters 185
Chapter 7 Food and Agriculture 149	Movement, Distribution, and Fate of Toxins 186 Solubility and Mobility 186
Objectives 149 Learning Online 149	Exposure and Susceptibility 186 Bioaccumulation and Biomagnification 187 Persistence 187
Golden Rice 150	What Do You Think? Children's Health 188
Food and Nutrition 151	Chemical Interactions 189
Chronic Hunger and Food Security 151 Famines and Acute Food Shortages 152 Malnutrition and Obesity 153 Eating a Balanced Diet 154	Mechanisms for Minimizing Toxic Effects 189 Metabolic Degradation and Excretion 189 Repair Mechanisms 190
Major Food Sources 155 Major Crops 155 Meat and Dairy 155 Seafood 157	Measuring Toxicity 190 Animal Testing 190 Toxicity Ratings 191 Acute versus Chronic Doses and Effects 191 Detection Limits 192

Risk Assessment and Acceptance Understanding Risks 193	Water Resources 230 Where Does Our Water Come From? 231
Accepting Risks 193 Establishing Public Policy 194	Major Water Compartments 232 Groundwater 232 Rivers, Lakes, and Wetlands 233 The Atmosphere 234
Chapter 9 Air: Climate and Pollution 198 Objectives 198 Learning Online 198	Water Availability and Use 234 Water-Rich and Water-Poor Countries 234 Water Use 235 Quantities of Water Used 235
What's Happening to Our Weather? 199 The Atmosphere and Climate 199 Energy and the "Greenhouse Effect" 200 Convection and Atmospheric Pressure 201 Why Does It Rain? 202 The Coriolis Effect and Jet Streams 203 Ocean Currents 204	Freshwater Shortages 236 A Precious Resource 236 Depleting Groundwater 236 Can We Increase Water Supplies? 237 Dams, Reservoirs, and Canals 237 Case Study Water Wars on the Klamath 238 Price Mechanisms and Water Policy 239
Seasonal Winds and Monsoons 204 Climate Change 205 El Niño/Southern Oscillation 206 Human-Caused Global Climate Change 207 Climate Skeptics 207 Sources of Greenhouse Gases 207	Water Management and Conservation 240 You Can Make a Difference: Domestic Conservation 240 Signs of Progress 241 What Can You Do? Saving Water and Preventing Pollution 241
What Do You Think? Science and Uncertainty in Climate Change 208 Current Evidence of Climate Change 209 Winners and Losers 210 Investigating Our Environment Satellite Images 211	Water Pollution 241 Point and Nonpoint Source Pollution 241 Biological Pollution 242 Inorganic Pollutants 245 Organic Chemicals 245
International Climate Negotiations 212 Controlling Greenhouse Emissions 212	Case Study Arsenic in Drinking Water 246 Sediment and Thermal Pollution 246
Climate and Air Pollution 213 Major Kinds of Pollutants 214 Sources and Problems of Major Pollutants 215 Indoor Air Pollution 216	Water Quality Today 247 Surface Waters in the United States and Canada 247 Surface Waters in Other Countries 249
Interactions Between Climate Processes and Air Pollution 217 Long-Range Transport 217 Stratospheric Ozone Depletion 217 Signs of Progress 219 Urban Climates 219 Effects of Air Pollution 220 Human Health 220	Ocean Pollution 251 Pollution Control 252 Nonpoint Sources and Land Management 252 Sewage Treatment 252 Remediation 254 Water Legislation 255 The Clean Water Act 255
Plant Pathology 220 Visibility Reduction 221 Acid Deposition 221	Chapter 11 Environmental Geology
Air Pollution Control 222 Reducing Production 222	and Earth Resources 259 Objectives 259
Clear Skies 224	Learning Online 259 Radioactive Waste Disposal at Yucca Mountain 260
Current Conditions and Future Prospects 225 Air Pollution in Developing Countries 225 Signs of Hope 225	A Dynamic Planet 261 A Layered Sphere 261 Tectonic Processes and Shifting Continents 261
Chapter 10 Water: Resources and Pollution 229	Minerals and Rocks 262 Rock Types and How They Are Formed 262 Weathering and Sedimentation 264

www.mhhe.com/cunningham3e

Economic Geology and Mineralogy 265

Nonmetal Mineral Resources 265

Metals 265

Objectives 229

Learning Online 229

Sharing the Chattahoochee 230

Fuels: Oil, Coal, and Uranium 266	Chapter 13
Environmental Effects of Resource Extraction 267 Mining 267	Chapter 13 Solid and Hazardous Waste 306 Objectives 306
What Can You Do? Coal-Bed Methane 268 Processing 269	Learning Online 306 Garbology: The Science of Trash 307
Conserving Geologic Resources 270 Recycling 270	Waste 307 The Waste Stream 308
Steel and Iron Recycling: Minimills Substituting New Materials for Old 271 Geologic Hazards 271 Earthquakes 271 Volcanoes 272 Floods 273 Erosion 274	Waste Disposal Methods 308 Open Dumps 308 Ocean Dumping 309 Landfills 309 Exporting Waste 311 Incineration and Resource Recovery 311 Investigating Our Environment Environmental Justice 312
Chapter 12 Energy 278 Objectives 278 Learning Online 278 Sea Power 279	Shrinking the Waste Stream 313 Recycling 313 Composting 315 Energy from Waste 316 Demanufacturing 316 Reuse 316 Producing Less Waste 317
Energy Sources and Uses Current Energy Sources 280 Per Capita Consumption 280	What Can You Do? Reducing Waste 318 Hazardous and Toxic Wastes 318
How We Use Energy 280 Fossil Fuels 282 Coal 282 Oil 283 Oil Shales and Tar Sands 284 Natural Gas 285	What Is Hazardous Waste? 318 Hazardous Waste Disposal 319 Options for Hazardous Waste Management 322 Investigating Our Environment Bioremediation 323
Nuclear Power 285 How Do Nuclear Reactors Work? 286 Nuclear Reactor Design 286 Nuclear Wastes 287	Chapter 14 Sustainability and Human Development 327 Objectives 327
Energy Conservation 288 Using Energy More Efficiently 288	Learning Online 327 Curitiba: An Environmental Showcase 328
What Can You Do? Some Things You Can Do to Save Energy 289 Cogeneration 290 What Do You Think? Hybrid Automobile Engines 290	Sustainability and Resources 328 Sustainable Development 329 Can Development Be Sustainable? 329 Resources in Classical Economics 329
Solar Energy 291 Passive Solar Heat 291 Active Solar Heat 291 High-Temperature Solar Energy 292 Photovoltaic Energy 293	Neoclassical Economics 330 Ecological Economics 330 Scarcity and Limits to Growth 332 Communal Property and the Tragedy of the Commons 333
Transporting and Storing Electrical Energy 294 Promoting Renewable Energy 295 Fuel Cells 295	Cost-Benefit Analysis and Natural Resource Accounting Accounting for Nonmonetary Resources 334 Measuring Real Progress 334
Biomass 296	Internal and External Costs 335
Fuelwood Crisis in Less-Developed Countries 296 Dung and Methane as Fuels 297 Fuels from Biomass 298	Trade and Development 336 International Trade 336 International Development and the World Bank 336 Microlending 336
Energy From the Earth's Forces 298 Hydropower 298 Wind Energy 299 Geothermal, Tidal, and Wave Energy 301	Green Business and Green Design 337 Design for the Environment 337 Jobs and the Environment 338
What's Our Energy Future? 302	What Can You Do? Personally Responsible Consumerism 338

Contents

ix