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Auditory Perception
An Analysis and Synthesis

This revised and updated Third Edition describes the nature of sound, how
sound is analyzed by the auditory system, and the rules and principles
governing our interpretation of auditory input. It covers many topics including
sound and the auditory system, locating sound sources, the basis for loudness
judgments, perception of acoustic sequences, perceptual restoration of
obliterated sounds, speech production and perception, and the relation of
hearing to perception in general. Whilst keeping the consistent style of the
previous editions, many new features have been added, including suggestions
for further reading at the end of each chapter, a section on functional imaging
of the brain, expanded information on pitch and infrapitch, and additional
coverage of speech processing. Advanced undergraduate and graduate
students interested in auditory perception, behavioral sciences, psychology,
neurobiology, architectural acoustics, and the hearing sciences will find this
book an excellent guide.

RICHARD M. WARREN is Research Professor and Distinguished Professor
Emeritus in the Department of Psychology at the University of Wisconsin-
Milwaukee. He is a Fellow of the Acoustical Society of America, American
Psychological Association, and the Association for Psychological Science.
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Preface

As in the earlier editions, the present text emphasizes the
interconnectedness of areas in auditory perception. These linkages are espe-
cially evident in the chapters dealing with acoustic sequences, pitch and
infrapitch, loudness, and the restoration of portions of signals obliterated by
extraneous sounds. In addition, the chapter on speech describes how processes
employed for the perception of brief nonverbal sounds are used for the
organization of syllables and words, along with an overlay of special linguistic
mechanisms.

The basic format of the book remains unchanged, but all chapters have been
updated. Among the additions are new sections in Chapter 1 describing the
principles underlying functional imaging of the brain based on the hemody-
namic techniques of fMRI and PET, and the electrodynamic techniques of EEG
and MEG. New information concerning pitch and infrapitch appears in
Chapter 3, and additional information concerning speech processing is
incorporated into Chapter 7. Suggested additional reading now appears at the
end of each chapter.

It is hoped that this text will be of value to research scientists and to pro-
fessionals dealing with sound and hearing. No detailed specialized knowledge
is assumed, since basic information necessary for understanding the material
covered is provided. It may be used for advanced undergraduate and graduate
courses in behavioral sciences, neurobiology, music, audio engineering, and
the health sciences and professions.

My own research in perception was carried out at the following insti-
tutions: Brown University; New York University College of Medicine; Cambridge
University; the Medical Research Council Applied Psychology Research Unit,
Cambridge; Oxford University; the Laboratory of Psychology at the National
Institute of Mental Health, Bethesda; and the University of Wisconsin-Milwaukee.
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Sound and the auditory system

This chapter provides a brief introduction to the physical nature of
sound, the manner in which it is transmitted and transformed within the ear,
and the nature of auditory neural responses.

The nature of auditory stimuli

The sounds responsible for hearing consist of rapid changes in air
pressure that can be produced in a variety of ways - for example, by vibra-
tions of objects such as the tines of a tuning fork or the wings of an insect, by
puffs of air released by a siren or our vocal cords, and by the noisy turbulence
of air escaping from a small opening. Sound travels through the air at sea
level at a velocity of about 335 meters per second, or 1,100 feet per second,
for all but very great amplitudes (extent of pressure changes) and for all
waveforms (patterns of pressure changes over time). Special interest is
attached to periodic sounds, or sounds having a fixed waveform repeated at a
fixed frequency. Frequency is measured in hertz (Hz), or numbers of repeti-
tions of a waveform per second; thus, 1,000 Hz corresponds to 1,000 repeti-
tions of a particular waveform per second. The time required for one
complete statement of an iterated waveform is its period. Periodic sounds
from about 20 through 16,000 Hz can produce a sensation of pitch and are
called tones. For reasons to be discussed shortly, it is generally considered
that the simplest type of periodic sound is a sine wave or pure tone (shown
in Figure 1.1A), which has a sinusoidal change in pressure over time. A
limitless number of other periodic waveforms exists, including square waves
(Figure 1.1B) and pulse trains (Figure 1.1C). Periodic sounds need not have
simple, symmetrical waveforms: Figure 1.1D shows a periodic sound
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Figure 1.1 Waveforms and amplitude spectra. The waveforms A through E
continue in time to produce the spectra as shown. Periodic waveforms A through D
have line spectra, the others either continuous spectra (E and F), or a band spectrum
(G). See the text for further discussion.

produced by iteration of a randomly generated waveform. The figure also
depicts the waveforms of some nonperiodic sounds: white or Gaussian noise
(Figure 1.1E), a single pulse (Figure 1.1F), and a short tone or tone burst
(Figure 1.1G).

The waveforms shown in Figure 1.1 are time-domain representations in
which both amplitude and time are depicted. Using a procedure developed by
Joseph Fourier in the first half of the nineteenth century, one can represent
any periodic sound in terms of a frequency-domain or spectral analysis in
which a sound is described in terms of a harmonic sequence of sinusoidal
components having appropriate frequency, amplitude, and phase relations.
(Phase describes the portion of the period through which a waveform has
advanced relative to an arbitrarily fixed reference time.) A sinusoidal or pure
tone consists of a single spectral component, as shown in Figure 1.1A. The
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figure also shows the power spectra corresponding to the particular complex
(nonsinusoidal) periodic sounds shown in Figures 1.1B, 1.1C, and 1.1D. Each of
these sounds has a period of one millisecond, a fundamental frequency of
1,000 Hz (corresponding to the waveform repetition frequency), and harmonic
components corresponding to integral multiples of the 1,000 Hz fundamental
as indicated.

Frequency analysis is not restricted to periodic sounds: nonperiodic sounds
also have a spectral composition as defined through use of a Fourier integral or
Fourier transform (for details see Hartmann, 1998). Nonperiodic sounds have
either continuous or band spectra rather than line spectra, as shown for the
sounds depicted in Figures 1.1E, 1.1F, and 1.1G.

As we shall see, frequency analysis of both periodic and nonperiodic sounds
is of particular importance in hearing, chiefly because a spectral analysis is
performed within the ear leading to a selective stimulation of the auditory
nerve fibers.

Although Figure 1.1 shows how particular waveforms can be analyzed
in terms of spectral components, it is also possible to synthesize waveforms
by adding together sinusoidal components of appropriate phase and ampli-
tude. Figure 1.2 shows how a sawtooth waveform may be approximated
closely by the mixing of only six harmonics having appropriate amplitude
and phase.

The range of audible amplitude changes is very large. A sound producing
discomfort may be as much as 10° times the amplitude level at threshold.
Sound level can be measured as power as well as by amplitude or pressure at a
particular point. Power usually can be considered as proportional to the square
of the amplitude, so that discomfort occurs at a power level 10'* times the
power threshold. The term ‘“‘sound intensity” is, strictly speaking, the sound
power arriving from a specified direction, and passing through a unit area
perpendicular to that direction. However, the term “intensity” is often used
interchangeably with “power,” although the latter term has no directional
specificity.

In order to span the large range of values needed to describe the levels of
sound normally encountered, a logarithmic scale has been devised. The loga-
rithm to the base 10 of the ratio of a particular sound power level to a refer-
ence power level defines the level of the sound in Bels (named in honor of
Alexander Graham Bell). However, the Bel is a rather large unit, and it is
conventional to use a unit 1/10 this size, the decibel (or dB) to express sound
levels. The level in dB can be defined as:

dB = 101log,, (I1/1,)
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Figure 1.2 Synthesis of a complex waveform through addition of harmonically
related sinusoidal components. The approximation of a sawtooth waveform could
be made closer by the addition of higher harmonics of appropriate amplitude and
phase. (From Brown and Deffenbacher, 1979.)

where I is the intensity or power level of the particular sound of interest, and
I, is the reference level expressed as sound intensity. One can also calculate
decibels on the basis of pressure or amplitude units using the equation:

dB = 201og,, (P1/P,)

where P, is the relative pressure level being measured and P, is the reference
pressure level. The standard reference pressure level is 0.0002 dyne/cm? (which
is sometimes expressed in different units of 20 micropascals). The level in dB
measured relative to this standard is called the Sound Pressure Level (or SPL).
Sound-level meters are calibrated so that the numerical value of the SPL can be
read out directly. There is another measure of sound level, also expressed in
dB, called the Sensation Level (SL), which is used occasionally in psycho-
acoustics. When measuring SL, the level corresponding to the threshold of a
sound for an individual listener is used as the reference level rather than the
standard physical value employed for SPL, so that dB SL represents the level
above an individual’s threshold. Since SL is used relatively infrequently, dB will
always refer to SPL unless otherwise specified.
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To give some feeling for sound pressure levels in dB, the threshold of normal
listeners for sinusoidal tones with frequencies between 1,000 and 4,000 Hz (the
range exhibiting the lowest thresholds) is about 0 dB (the standard reference
level); the ambient level (background noise) in radio and TV studios is about 30 dB,
conversational speech about 65 dB, and the level inside a bus about 90 dB. Some
rock bands achieve levels of 120 dB, which approaches the threshold for pain and
can cause permanent damage to hearing following relatively brief exposures.

Experimenters can vary the relative intensities of spectral components by
use of acoustic filters which, in analogy with light filters, pass only desired
frequency components of a sound. A high-pass filter transmits only frequency
components above a lower limit, and a low-pass filter transmits only fre-
quencies below an upper limit. Bandpass filters (which transmit frequencies
within a specified range) and band-reject filters (which block frequencies
within a specified range) are available. The characteristics of high-pass and low-
pass filters can be expressed in terms of both cut-off frequency (conventionally
considered as the frequency at which the filter attenuation reduces power by
half, or 3 dB), and the slope, or roll-off, which is usually expressed as dBJoctave
beyond the cut-off frequency (a decrease of one octave corresponds to halving
the frequency). Bandpass filters are characterized by their bandwidth (the
range in hertz between the upper and lower cut-off frequencies), and they can
also be characterized by their “Q” (the bandwidth divided by the center fre-
quency of the filter). In neurophysiological work, Q0 is sometimes used in
which 10 dB downpoints are used to express the bandwidth rather than the
conventional value of 3 dB. Filter types are shown in Figure 1.3.

Our auditory apparatus

The outer ear and the middle ear
It is convenient to consider the ear as consisting of three divisions.
The outer ear, also called the pinna (plural “pinnae”) or auricle, is shown in
Figure 1.4. It appears to contribute to localization of sound sources by virtue of
its direction-specific effect on the intensity of certain frequency components of
sounds, as will be discussed in the next chapter. The human pinna is sur-
rounded by a simple flange (the helix) which is extended considerably in some
other mammals to form a conical structure functioning as a short version of
the old-fashioned ear trumpet. These acoustic funnels can enhance sensitivity
to high frequency sounds when pointed toward their source by controlling
muscles, as well as being of help in locating the sound source.
After the acoustic transformation produced by reflections within our pinna,
the sound passes through the ear canal (or external auditory meatus) which
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Figure 1.3 Characteristics of filters. Low-pass, high-pass, and bandpass filters are
illustrated, along with filter slopes (dBJoctave) and cut-off frequencies (frequencies
at which there is a 3 dB reduction in intensity).
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Figure 1.4 The outer ear (other names: pinna and auricle). The major anatomical
features are shown.



