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Foreword

Over the past three decades, process integration has evolved as a holistic approach
to design and operation which emphasizes the unity of the tackled systems. The
overwhelming majority of research publications and textbooks in the field have
focused on continuous systems. This has been the case for two main reasons. First,
until recently, most of the sizable process industries have been designed to oper-
ate in a near steady-state and continuous mode. This is changing given the need
to produce a number of specialty chemical to address variable market needs, the
increasing level of flexibility, and the emergence of new industrial sectors (e.g.,
biorefineries) that favor batch operations. Second, process integration techniques
for unsteady-state operations are more challenging than those for steady-state oper-
ations. As such, contributions to the field of batch process integration have come
from a limited number of researchers. Such contributions have invoked advanced
concepts in process design, operation, and scheduling, network synthesis and anal-
ysis, and some graphical but largely mathematical programming techniques. Hence,
these contributions have been read and utilized by a select few experts. There
has been a clear literature gap. Therefore, it was with great delight that I learned
about Prof. Thokozani Majozi’s project to overcome this literature gap by intro-
ducing this textbook that addresses batch chemical process integration. Having
followed Prof. Majozi’s exciting work in the field, I was convinced that the product
will be superb. Indeed, now that the book is complete and that I had the priv-
ilege of reviewing it in full, I am thrilled that such an outstanding contribution
is now available to researchers, students, and practicing engineers. The book is
very well written and gradually introduces key concepts in batch process integra-
tion including the necessary background in mathematical programming, network
representation, and operational concepts. The book also emphasizes the concep-
tual framework behind many of the mathematical formulations and focuses on the
insights that drive the design, operation, and scheduling strategies. The book is
loaded with examples that streamline the concepts and facilitate the learning pro-
cess. There is a nice spectrum of applications ranging from basic manufacturing
to waste reduction (primarily water management and wastewater minimization) to
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heat integration. This is a much-needed and highly-valued book that will open the
door for many readers to learn the fundamentals and application of batch process
integration.

Dallas, TX Mahmoud El-Halwagi



Preface

Research in batch processes only received heightened interest in the last 2 to 3
decades. Most of the work in published chemical engineering literature tends to
focus on continuous processes at steady state. This occurrence dovetails with the
evolution of the chemical industry as well as the dynamics of the global markets
since the dawn of industrial revolution. From the late nineteenth to the mid-twentieth
centuries, global markets were characterised by reasonable stability and crafted on
bulk demand and mass production which favoured continuous processes. Demand
for small volume high value added products constituted a very small fraction in
that era. This pattern, however, began to change drastically in the latter part of the
last century, with major markets displaying high levels of volatility that required
processes amenable to sudden changes. Batch processes are ideally suited for this
situation. Consequently, research in batch process scheduling began in earnest from
the mid to the late 1970s. Scheduling, which is aimed at capturing the essence of
time, is the cornerstone of all batch related activities, including Process Integration.

Process integration was developed and rose to prominence during the energy
crisis of the 1970s in the form of Pinch Technology. The latter proved to be the
breakthrough in energy optimization and sustainable design. It advocates the explo-
ration of maximum energy recovery within the process through process—process
heat exchange prior to resorting to external utility requirements. Its strength lies
in the ability to set energy targets before commitment to design. Moreover, its
graphical nature allows the designer to guide the optimisation process, which is not
necessarily the case with mathematical approaches. This finally results in an energy
efficient heat exchanger network (HEN). It still remains one of the major advances in
chemical engineering even today. However, this contribution was aimed at continu-
ous processes at steady state and ignored the impact of time dependent interventions
as traditionally encountered in batch processes. This omission was not seen as a
major drawback in process integration within the chemical engineering community,
since continuous processes have largely been perceived to be much more energy
intensive than their batch counterparts. The concept of process integration was later
extended to mass exchanger networks with the ultimate goal of waste minimisation
in 1989 where it also proved to be a major contribution. Again, the focus at the
early stages of this advancement was on continuous rather than batch processes for
similar reasons.
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Whilst methods for scheduling batch processes advanced steadily throughout the
2 quarters of the last century, process integration aspects pertaining to energy and
waste minimisation still remained largely isolated from the mainstream research.
There were indeed a few contributions in this regard, but their impact remained min-
imal for one main reason. They were largely a direct adaptation of the techniques
developed for continuous processes, which meant that the time dimension had to be
directly or indirectly suppressed in the analysis, thereby resulting in somehow inac-
curate results. Stringent environmental legislation and the growth of batch processes
in the industrial sector have necessitated research on the development of process
integration techniques that are particular to batch processes. Since the beginning
of this century, significant advances have been made in this regard. It is becom-
ing clear, however, that batch processes, unlike continuous processes, are more
amenable to mathematical than graphical analysis. This situation arises mainly from
the added time dimension that makes it difficult to confine batch process analysis to
2 dimensions as traditionally encountered in graphical methods.

This textbook presents a comprehensive overview of some of the milestones that
have been achieved in batch process integration. It is largely based on mathematical
techniques with limited content on graphical methods. This choice was deliberately
influenced by the observation made in the foregoing paragraph, i.e. in order to han-
dle time accurately mathematical techniques seem to be more equipped than their
graphical counterparts. The book is organised as follows.

e Chapter 1 gives an overview of batch processes.

e Chapter 2 introduces the reader to the basis of all the mathematical techniques
presented in this textbook. The mathematical techniques are founded on a recipe
representation known as the state sequence network (SSN), which allows the use
of states to dominate the analysis thereby reducing the binary dimension.

e Chapter 3 presents a synthesis technique for multipurpose batch plants and
further introduces an unexplored operational philosophy so called Process
Intermediate Storage (PIS) operational philosophy.

o Chapter 4 presents a technique for wastewater minimisation in batch plants with
single contaminants.

e Chapter 5 addresses the optimum design of intermediate water storage in
multiproduct and multipurpose batch plants.

e Chapter 6 presents a technique for wastewater minimisation in multipurpose
batch plants characterised by multiple contaminants.

e In Chapter 7 a mathematical technique that takes into account presence of
multiple reusable water storage vessels is presented.

e A near-zero effluent approach is presented in Chapter 8. In particular, this chapter
focuses on a special class of batch plants wherein water is a major constituent of
the final product.

e Chapter 9 presents a mathematical technique for wastewater minimisation
through exploitation of idle processing units, which is a unique and largely
inherent feature of batch plants.
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e Heat integration is addressed in Chapter 10 and 11. Chapter 10 focuses on direct
heat integration whilst Chapter 11 on indirect heat integration.

e Lastly, Chapter 12 presents graphical techniques in wastewater minimisation of
batch processes as well as a brief comparison between graphical and mathemat-
ical techniques. The comparison aims to highlight the necessity of time in batch
plants.

University of Pretoria,
South Africa Thokozani Majozi
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Chapter 1
Introduction to Batch Chemical Processes

Overview Batch processes are mostly suited to low volume high value added prod-
ucts that are usually characterised by common recipes, which render them amenable
to sharing of equipment units. Due to their intrinsic adaptation to sudden changes
in recipe, they are processes of choice in volatile or unstable conditions that have
become regular in global markets. This chapter provides the background informa-
tion on batch chemical processes, which constitutes the basis for the forthcoming
chapters. Only the essential elements of batch plants are captured with references,
where necessary, to further sources of information for the benefit of the reader.

1.1 Definition of a Batch Process

Any process which is a consequence of discrete tasks that have to follow a pre-
defined sequence from raw materials to final products is a batch process. This
predefined sequence is commonly known as a recipe. The primary features of any
comprehensive recipe are the quantities of materials that have to be processed by
individual tasks as well as the duration of each task within the recipe. The secondary
features are the operating conditions of the various tasks, and in less common cir-
cumstances, the locality or geographic position of the task at hand. In processes
wherein safety is of great concern, it might be necessary to perform a particular task
in a designated area equipped with relevant safety features.

In reality, it is the discreteness of tasks that differentiates batch processes from
their continuous counterparts. To illustrate, Fig. 1.1a shows a typical batch reactor
with all the tasks comprising the entire batch reaction. On the other hand, Fig. 1.1b
depicts a typical continuous reactor at steady-state. The discreteness of tasks in
Fig. 1.lais evident, which is not the case in Fig. 1.1b. Consequently, it is fair to deem
batch processes ‘distributed in time’, whilst continuous processes, at steady-state,
are ‘frozen in time’.

Another illustration for the distinction between batch and continuous process is
depicted in Fig. 1.2. The discreteness of tasks that characterise a batch process is
evident in Fig. 1.2a. The use of storage becomes necessary when the completion of

T. Majozi, Batch Chemical Process Integration, DOI 10.1007/978-90-481-2588-3_1, 1
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