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Preface

The controllability and observability are of great importance in both theory
and applications. A complete theory has been established for linear hyperbolic
systems, in particular, for linear wave equations. There have also been some
results for semilinear wave equations. For quasilinear hyperbolic systems, how-
ever, very few results have been published even in the one-space-dimensional
(1-D) case.

In this monograph based mainly on the results obtained by the author
and his collaborators in recent years, by means of the theory on the semi-
global classical solution, a simple and direct constructive method is presented
in a systematic way to get both the controllability and observability in the
framework of classical solutions for general first order 1-D quasilinear hyper-
bolic systems with general nonlinear boundary conditions, and corresponding
applications are given for 1-D quasilinear wave equations and for unsteady
flows in a tree-like network of open canals, respectively. This will be of bene-
fit to scholars and graduate students in applied mathematics and in applied
sciences.

The Appendix given at the end of this monograph is specially written for
those readers who are not familiar with quasilinear hyperbolic systems.

I would like to take this opportunity to express my sincere thanks to
the late professor J.-L. Lions, who initiated and brought me into the area
of control theory, for his encouragement and guidance. My special thanks
are due to Bopeng Rao, Binyu Zhang, Yi Jin, Lixin Yu, Zhigiang Wang and
Qilong Gu for their kind cooperation in the course of research on this subject,
supported by the National Basic Research Program of China (973 Program)
(2007CB814800). Finally, I am also indebted to Ms. Chunlian Zhou for her
patient and efficient work in editing this book.

Tatsien Li
October 2009 Fudan University
Shanghai, China
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1

Introduction

1.1 Exact Controllability

What is the exact controllability? Let us begin from the simplest situation.
Consider the following system of linear ODEs

dX

— =AX+1B .

7 + Bu, (1.1)
where ¢ is the independent variable (time), X = (X3, --,Xn) is the state
variable, 4 = (u1, - ,Um) is the control variable, A and B are N x N and

N x m constant matrices respectively.

This system possesses the exact controllability on the interval [0, T (T >
0), if, for any given initial data X, at t = 0 and any given final data Xr at
t = T, we can find a control function u = u(t) on [0, T], such that the solution
X = X(t) to the Cauchy problem

dX

t=0: X = X() (13)
verifies exactly the final condition
t=T: X = XT. (14)

It is well-known that system (1.1) possesses the exact controllability on
[0,7T], if and only if the matrix

[B:AB: -.. : AN7B] (1.5)

is full-rank (cf. [77]). Hence, if system (1.1) is exactly controllable on an
interval [0,7] (T' > 0), then it is also exactly controllable on any interval
[0,T1] (T1 > 0), in particular, the exact controllability can be realized almost
immediately.



2 1 Introduction

We now consider the exact controllability for hyperbolic systems of PDEs.
For this purpose, several points different from the ODE case should be pointed
out as follows.

1. In order to solve a hyperbolic system on a bounded domain (or on a
domain with boundary), one should prescribe suitable boundary conditions.
As a result, the control may be an internal control appearing in the equation
like in the ODE case and acting on the whole domain or a part of domain,
or a boundary control appearing in the boundary conditions and acting on
the whole boundary or a part of boundary.

Since the boundary control is much easier than the internal control to
be handled in practice, we concentrate our attention mainly on the exact
boundary controllability, namely, the exact controllability realized only
by boundary controls.

The exact boundary controllability means that there exists 7' > 0
such that by means of boundary controls, the system (hyperbolic equations
together with boundary conditions) can drive any given initial data at £ =0
to any given final data att =T.

If the exact boundary controllability can be realized only for small (in some
sense!) initial data and final data, it is called to be a local exact boundary
controllability; otherwise, a global exact boundary controllability.

2. Since the hyperbolic wave has a finite speed of propagation, the exact
boundary controllability time T' > 0 should be suitably large.

In fact, for any given initial data, by solving the corresponding forward
Cauchy problem, there is a unique solution on its maximum determinate do-
main.

Similarly, for any given final data, by solving the corresponding backward
Cauchy problem, there is a unique solution on its maximum determinate do-
main.

In order to ensure the consistency, these two maximum determinate do-
mains should not intersect each other (Figure 1.1), then T'(> 0) must be
suitably large.

0 L =z

Figure 1.1
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On the other hand, from the point of view of applications, T(> 0) should
be chosen as small as possible.

3. For the weak solution to quasilinear hyperbolic systems, which includes
shock waves and corresponds to an irreversible process, generically speaking,
it is impossible to have the exact boundary controllability for any arbitrarily
given initial and final states (cf. [7]). Of course, by requiring certain additional
restrictions on the initial state and the final state (particularly on the later)
and, perhaps, suitably weakening the definition of controllability, it is still
possible to consider the exact boundary controllability in the framework of
weak solutions, however, up to now several results obtained in this direction
with different methods are only for very special quasilinear hyperbolic systems
(the scalar convex conservation law [3-4], [32], genuinely nonlinear systems of
Temple class [2] and the p-system in isentropic gas dynamics [17]). Hence, in
order to give a general and systematic presentation, in this book we restrict
ourselves to the consideration in the framework of classical solutions, namely,
the solution under consideration to the hyperbolic system means its classical
solution which corresponds to a reversible process.

We know that for nonlinear hyperbolic problems, there is always the local
existence and uniqueness of classical solutions, provided that the initial data
and the boundary data are smooth and suitable conditions of compatibility
hold; but, generically speaking, the classical solution exists only locally in
time (see [33-34], [39], [41]). However, as we said before, in order to guarantee
the exact boundary controllability, we should have a classical solution on the
interval [0,7T), where 7' > 0 might be suitably large. This kind of classical
solution is called to be a semi-global classical solution (see Chapter 2),
which is different from either the local classical solution or the global classical
solution (cf. [10], [53], [60-62]).

Thus, the existence of semi-global classical solution is an important basis
for the exact boundary controllability.

Since, generically speaking, the semi-global classical solution to quasilinear
hyperbolic systems exists only for small initial and boundary data and keeps
small in its existence domain (see Chapter 2), in general one can only expect
to have the local exact controllability in the quasilinear case. However, it is
still possible to get the global exact controllability in some special cases (see
Remark 3.9).

In the case of hyperbolic PDEs, most studies on the controllability are
concentrated on the wave equation

(cf. [73-75] and the references therein). Moreover, there are some results for
semilinear wave equations

Ut — Ay = F(U) (17)
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(cf. [15~16], [35], [99-100], [103)). However, in the quasilinear case, very few
results have been published even for the 1-D quasilinear hyperbolic PDEs (see
9).

In this book we shall consider the exact boundary controllability for first
order quasilinear hyperbolic systems with general nonlinear boundary condi-
tions in one-space dimensional case.

More precisely, we consider the following first order 1-D quasilinear hyper-
bolic system

Ou Ou
where v = (u1, - ,u,)T is the unknown vector function of (t,x), A(u)
is an n x n matrix with smooth entries a;;(u) (1,7 = 1,---,n), F(u) =
(fr(w),- -+, fa(u))T is a smooth vector function of v with

F(0) = 0. (1.9)

Obviously, u = 0 is an equilibrium of (1.8).
By hyperbolicity, for any given u on the domain under consideration, A(u)

has n real eigenvalues A1 (u), -+ , An(u) and a complete set of left eigenvectors
li(w) = (la(u), - lin(u)) (=1, n):
Li(u)A(u) = Ai(w)li(u). (1.10)

In particular, when A(u) has n distinct real eigenvalues
Xi(w) < Ag(u) < -+ < Ap(w) (1.11)

on the domain under consideration, system (1.8) is called to be strictly hy-
perbolic.
Suppose that there are no zero eigenvalues:

A(u) <0< Xs(w) (r=1,---,m;s=m+1,---,n). (1.12)

In this situation, the subscripts 7 = 1,--- ,m (resp. s = m +1,--- ,n) are
always used to correspond to the negative (resp. positive) eigenvalues.
Let
v = L (u)u (i=1,---,n). (1.13)

v; is called to be the diagonal variable corresponding to the -th eigenvalue
/\i (u) .
The boundary conditions are given by

z=0: vy=Gs(t,v1, " ,vm)+ Hs(t) (1.14)
(s=m+1,---,n),
z=L: vp=Gr(t,9ma1, " >0n) + Hp(t) (1.15)

(r=1,---,m),
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where L is the length of the space interval 0 <z < L, G; (i=1,---,n) are
suitably smooth functions and, without loss of generality, we assume

Gi(t,0,---,0)=0 (i=1,---,n); (1.16)

moreover, all H;(t)( = 1,---,n) or a part of H;(t)(4 = 1,--+,n) will be
chosen as boundary controls.

(1.14)—(1.15) are the most general nonlinear boundary conditions to guar-
antee the well-posedness for the forward problem, the characters of which can
be shown as

1) The number of boundary conditions on z = 0 (resp. on z = L) is equal
to the number of positive (resp. negative) eigenvalues.

2) The boundary conditions on z = 0 (resp. on = = L) are written in the
form that the diagonal variables vs (s =m+1,--- ,n) corresponding to posi-
tive eigenvalues (resp. the diagonal variables v, (r = 1,--- ,m) corresponding
to negative eigenvalues) are explicitly expressed by the other diagonal vari-
ables.

For any given initial condition

t=0: u=¢p(x), 0<z<L (1.17)
and any given final condition
t=T: u=%P(x), 0<z<L (1.18)

with small C* norms |[¢{{c1jo,z; and {[®|{crjo,r), by means of the theory on the
semi-global classical solution (see Chapter 2), we shall present a direct and
simple constructive method to show the following theorems on the local exact
boundary controllability (see Chapter 3).

B.C. B.C.

o L =z
Figure 1.2

Theorem 1.1 (Two-sided control, [55]). If
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1 1
T>L max (|/\T(0)|, AS(O))’ (1.19)

ga=m+1,--- ,n
then there exist boundary controls H;(t) (i = 1,---,n) with small C*[0,T)
norm, such that the corresponding mized initial-boundary value problem (1.8),
(1.17) and (1.14)-(1.15) admits a unique semi-global C* solution u = u(t, z)
with small C' norm on the domain R(T) = {(t,x)] 0<t<T, 0<z <L},
which verifies exactly the final condition (1.18) (Figure 1.2).

Theorem 1.2 (One-sided control, [54]). Suppose that the number of pos-
itive eigenvalues is not bigger than that of negative ones:

mdéfn~m§m, i.e, n<2m. {1.20)

Suppose furthermore that boundary condition (1.14) on © = 0 can be equiva-
lently rewritten in a neighbourhood of u =0 as

t=0: =G, Vms1," " »UmsVUmt1, " ,Un) + Hr(t)
(F=1,---,m), (1.21)
where ~
G=(t,0,---,0)=0 (F=1,---,m), (1.22)
then
NHzllctom (F=1,---,m) small enough (1.23)
<= ||Hsllcrjo,r) (s =m +1,--- ,n) small enough.
If
T>L( X ! + max ——1—) (1.24)
L ()] T s=mit i Aa(0) ) '

then, for any given H,(t) (s = m +1,--- ,n) with small C'[0,T] norm, sat-
isfying the conditions of C' compatibility at the points (t,z) = (0,0) and

t

T

B.C.

(0] L =z

Figure 1.3
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(T,0) respectively, there exist boundary controls H.(t) (r = 1,---,m) at
x = L with small C*[0,T] norm, such that the corresponding mized initial-
boundary vaelue problem (1.8), (1.17) and (1.14)—(1.15) admits a unique
semi-global C' solution w = wu(t,z) with small C' norm on the domain
R(T) ={(t,z)] 0 <t £T, 0<Lx <L}, which verifies ezactly the final
condition (1.18) (Figure 1.3).

Theorem 1.3 (Two-sided control with less controls, [96]). Suppose that
the number of positive eigenvalues is less than that of negative ones:

mn—m<m, ie,n<2m. (1.25)
Suppose furthermore that, without loss of generality, the first m boundary
conditions in (1.15) at x = L, namely,

z=L: v;=Gslt,Vmr1, o)+ H:(t) (F=1,---,m), (1.26)
can be equivalently rewritten in a neighbourhood of u =0 as

z=L: v,=G,(t,v, - ,vm)+Hs(t) (s=m+1,---,n), (1.27)
where ~

Gs(t,0,---,0)=0 (s=m+1,---,n), (1.28)

then

IHsllcror) (s =m+1,--- ,n) small enough (1.29)
<= ||Hz||lc1jo,7) (T =1,--- ,m) small enough.

If T > O satisfies (1.24), then, for any given Hz(t) (F = 1,---,/m) with
small C*[0,T) norm, satisfying the conditions of C' compatibility at the
points (t,z) = (0,L) and (T,L) respectively, there exist boundary controls
Hy(t) s=m+1,---,n)atz=0and Hr()(F=m+1,--- ,m) atx = L
with small C1[0,T] norm, such that the corresponding mized initial-boundary
value problem (1.8), (1.17) and (1.14)—(1.15) admits a unique semi-global C*

solution u = u(t,x) with small C* norm on the domain R(T) = {(t,w). 0<

t <T, 0 <z < L}, which verifies exactly the final condition (1.18) (Figure
1.4).

t

T
Part
B.C. B.C.
0] L =z

Figure 1.4
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Remark 1.1. In the case of two-sided control, the number of boundary
controls is equal to n, the number of unknown variables, namely, that of all
the eigenvalues.

Remark 1.2. In the case of one-sided control, the number of bound-
ary controls is reduced to the maximum value between the number of posi-
tive eigenvalues and the number of negative eigenvalues, and the boundary
controls act only on the side with more boundary conditions, however, the
controllability time must be enlarged.

In particular, when the number of positive eigenvalues is equal to the
number of negative eigenvalues, boundary controls can act on each side.

Remark 1.3. In the case of two-sided control with less controls, both the
number of boundary controls and the controllability time are as in the case of
one-sided control, however, one needs all the boundary controls acting on the
side with less boundary conditions and a part of boundary controls acting on
the side with more boundary conditions.

Remark 1.4. The estimate on the exact controllability time T in Theo-
rems 1.1-1.3 is sharp.

Remark 1.5. The boundary controls which realize the exact boundary
controllability are not unique.

1.2 Exact Observability

Consider the system of linear ODEs
dx

&t _ ax, 1.30
where X = (X;,--- ,Xn) and A is an N x N constant matrix.
For any given initial data
t=0: X =X, (1.31)

Cauchy problem (1.30)—(1.31) admits a unique solution X = X (t).
Let
Y(t) = DX(t) (1.32)

be the corresponding observed value, where D is an m x N constant matrix.
System (1.30) with (1.32) possesses the exact observability on the inter-
val [0,T] (T > 0), if the observed value Y (¢) on the interval [0, T] determines
uniquely the initial data Xo (then the solution X (t) on any interval (0, 7).
It is well-known that system (1.30) with (1.32) possesses the exact observ-
ability on [0, T, if and only if the matrix



