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Chapter 1

YEAST TRANSFORMATION

I. YEAST TRANSFORMATION

Early efforts leading to yeast transformation’? have led to the development of a so-
phisticated array of vectors and systems for manipulating the genome of Saccharomyces
cerevisiae.* Most of these techniques and approaches now seem to be readily extendable to
other yeast species: transformation of, e.g., Schizosaccharomyces pombe* or Kluyveromyces
lactis® was reported quite early. Other nonconventional yeasts received attention more re-
cently (for review, see Reference 6). The same general principles seem to apply to the ten
or more species so far tested; for example, integrative vectors do generally integrate by
homologous recombination, and chromosomal scquences (ARS) can confer extrachromo-
somal replication. This makes yeasts quite different from other eukaryotic cells including
fungi, where nonhomologous recombination events are frequent or predominant and where
ARS sequences could not be convincingly demonstrated up to now.

A. PROCEDURES FOR YEAST TRANSFORMATION

Early work on yeast transformation used spheroplasts stabilized in an isotonic me-
dium.'** In the presence of calcium ions and polyethylene glycol (PEG), DNA is taken up
by a poorly understood process.” The efficiency of transformation (transformed cells per
surviving protoplast) depends on the genetic background of the recipient® and on the type
of selection applied: under nonselective conditions, several percent of transformed cells can
be obtained.” Fusion of yeast spheroplasts with DNA-containing liposomes'® or with Esch-
erichia coli minicells harboring yeast E. coli shuttle plasmids'' can be considered as variations
of the above procedure and result in a higher transformation efficiency (up to 10% with
minicells). Many strains, however, do not exhibit such a high transformation efficiency,
and selective markers have to be used in order to select transformants.

The spheroplast method, although still widely used, is time consuming, and its efficiency-
can be severely limited by the regeneration step where protoplasts are allowed to regenerate
into whole cells. Several methods using whole cells have been developed which are, in
some cases, as efficient as the spheroplast method. Cells of Saccharomyces cerevisiae treated
with alkali cations (lithium, for example)'? or with 2-mercaptoethanol'® were transformed
at high efficiency in the presence of PEG and after a heat shock. The specificity for cation
requirement (i.e., monovalent vs. divalent) was found to be strain specific, some strains
being transformable only in the presence Ca®*, others only with Li*." Although PEG is
generally needed to obtain a significant transformation frequency, probably by triggering
irreversible adsorption of plasmid DNA,' some strains can be transformed without PEG.'*
Whole cell transformation using the LiCl method have been adapted to other yeast species
such as Schizosaccharomyces pombe,'® K. lactis,"” or Yarrowia lipolytica.'®

Although the mechanisms involved in spheroplast and whole cell transformation are
equally poorly understood, the two procedures probably rely on quite different mechanisms.
Cotransformation seems to be the rule when spheroplasts are used, indicating that many
plasmids enter the cells. Initial experiments with two integrative plasmids carrying different
marker genes gave 25 to 33% cotransformation in Saccharomyces cerevisiae,'® On the
contrary, few plasmids seem to enter cells transformed by the LiCl method.?® On the other
hand, cells made competent by the LiCl method seem to take up linear DNA more readily
than circular DNA, whereas no such difference is observed when the spheroplasting method
is used: linearized ARS plasmids transform spheroplasts of S. cerevisiae at the same frequency
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as circular plasmids, but they transform 80-fold more efficiently than uncut plasmids of
LiCl-treated cells.?' A similar increase of transformation efficiency of linearized ARS plas-
mids was observed on LiCl-treated Y. lipolytica cells.?>

Transformation by electroporation has been reported on spheroplasts?® and on whole
cells.* It avoids using PEG which may be detrimental to cell viability. Since this method
does not rely on a ‘‘natural competence’” stage, it may be widely used for strains displaying
otherwise poor transformability. The method has been recently optimized for transforming
whole cells of S. cerevisiae, Schizosaccharomyces pombe, K. lactis, and Y. lipolytica yielding
transformation frequencies above 10° transformant per microgram of input plasmid.*

All above methods were effective for transforming the nucleus, but failed in transforming
mitochondria. Organelle transformation has been achieved recently in several systems in-
cluding yeast mitochondria® by bombarding cells with tungsten microprojectiles coated with
DNA. A strain bearing a deletion in the mit DNA oxi3 gene was bombarded with 1-pm
tungsten microprojectiles coated with a mixture of two uncut plasmids, YEp 352 (carrying
a nuclear marker [URA3] and a 2-pm sequence) and pQA oxi3 (carrying a functional oxi3
gene): about 0.1% of the nuclear transformants (Ura*) were respiratory competent (able to
grow on glycerol). All mitochondrial transformants resulted from homologous recombination
between plasmid and mit DNA. Transformation of mitochondria completely devoid of mit
DNA (rho®) was reported using the oxil gene cloned into pBR322:* in this case the plasmid
was amplified into concatemers of the size expected for wild-type mit DNA.

Transfer of plasmids by ‘‘transgeneric sex'’ may provide an alternative method to
transformation for transferring plasmids between bacteria and yeasts.”™ In the experiments
reported, the plasmids to be transferred carried the cis-acting sequence oriT (either derived
from an F plasmid or from an Inc Pl R-plasmid) in top of a yeast marker and origin of
replication. mob functions (F or R specific) were provided in trans by F or R plasmids.
When E. coli strains carrying these plasmids were mixed with exponentially growing yeast
cells, yeast ‘‘transconjugants’’ appeared at a frequency 10~7 to 10~ per recipient cell and
up to 10~2 per donor cell, depending on the ratio of donor to recipient cells in the assay.
Transfer was 10- to 100-fold below frequency of bacterial conjugation but similarly required
viable donor cells, was DNAse insensitive, required cell contact, and depended on matched
oriT and mob functions. tra functions encoded by the R and F plasmids appeared (perhaps
surprisingly) essential for transfer. ‘*“Matings’’ occurred on plates but not in liquid, and the
size dependence was high: a complete F’ plasmid (100 kb) was transferred 10* times less
efficiently than a 10-kb plasmid.

B. FATE OF TRANSFORMING DNA

Both double-stranded and single-stranded DNA have been used to transform yeast with
high efficiency. Single-stranded circular vectors were reported to transform 10- to 30-fold
more efficiently than double-stranded vectors.* If they carried a yeast origin of replication,
they were faithfully converted to double-stranded plasmids in yeast. Single-stranded plasmids
carrying no origin of replication recombined efficiently with homologous chromosomal
sequences without detectable intermediate free duplex formation.*”

Yeast cells were shown to relegate at high frequency linearized DNA, suggesting that
they contain a very efficient ligase activity, or a low exonuclease activity, or both, as
compared with E. coli. Plasmids carrying a yeast origin of replication were linearized or
gapped before transformation.*' A very limited drop in transformation efficiency was ob-
served even when the gaps were made in plasmid sequences having no homology with the
yeast genome. Recircularization occurred whether the ends were flush or protruding with
compatible or uncompatible overhangs. Fragments entering the same cell were colligated
efficiently: a mixture of DNA fragments carrying sclectable markers (LEU2 and a 2 pm
origin of replication on a HindlI fragment, and URAZ on an EcoRI fragment) transformed



at a frequency 100-fold lower only than the circular plasmid carrying both markers," and
circular plasmids were recovered in E. coli.

Recombination between DNA fragments entering the same yeast cell has been used to
create new molecules in vivo. An extensive series of plasmid derivatives was built using
gapped replicative plasmids cotransformed with a DNA fragment presenting homology to
cach side of the gap.?' No selection was necessary for the additional sequences present on
the fragment between the two homology blocks, and most plasmids recovered resulted from
faithful recombination, thus bypassing tedious in vitro procedures. Insertion of any DNA
cloned in a pBR322 derivative into a yeast plasmid by recombination in vivo has been
documented in various yeast species: copolymerization occurred at frequencies of 10% at
least in S. cerevisiae®* and of more than 50% in Schizosaccharomyces pombe* or Y. lipo-
Iytica. ™

The possibility to repair a gapped plasmid on a cotransformed linear fragment has been
elegantly used by Pompon and Nicolas® to generate a library of mosaic proteins by recom-
bining in vivo rabbit and mouse cytochrome P-450 (P-450) genes which are only 69 to 73%
sequence related. Plasmids carrying the rabbit P-450 gene gapped at various positions were
cotransformed with a cDNA of mouse P-450. Of the plasmids recovered, 90% were recom-
binants. There was no evidence of sequence scrambling, and recombination took place within
segments of high local similarity as short as 17 bp. In the absence of any functional selection,
most of the recombinants did produce an active protein, indicating that few frame shifts and
stop codons were created. Since mouse and rabbit P-450 have markedly different substrate
specificity, assessing the substrate specificity of chimeric proteins permitted the identification
of segments critical for substrate specificity. This approach of the structure-function rela-
tionships of related proteins should be readily extendable to other proteins.

Transformation of yeast with synthetic oligonucleotides 20 to 60 bp long has been
reported.* A strain carrying a stop codon after the third codon of CYC!I was reverted to
Cyc* (growth on nonfermentable carbon source) after transformation of 3.107 cells with
100 p.g of oligonucleotide; the frequency of transformation was 10° times lower than with
a control ars plasmid. Both single-strand and double-strand oligonucleotides were effective.
Site-specific mutagenesis on single-stranded vectors has been performed using yeast trans-
formation:3”*® cotransformation of the single-stranded template (carrying an ARS sequence,
a selectable marker, and a gene inactivated by a nonsense mutation) with an oligonucleotide
(reverting the stop mutation) in a 30:1 ratio resulted in up to 43% of the plasmids having
corrected the mutation. This method offers, thus, very high efficiency without requiring any
enzymatic step in vitro.

Most of the former results as well as those related below (see Section II) amply dem-
onstrate that yeasts process incoming DNA faithfully by homologous recombination and
reparation, a rather unique situation among eukaryotes. Occasional deviations observed
during the transformation process may reflect recombination pathways that have not been
fully characterized yet. Spontaneous deletions occur on transformatiop of circular replicating
plasmids.* They are markedly stimulated if the plasmid is linearized prior to transformation.*
suggesting that spontaneous linearization during the transformation process may be a step
in the generation of deletions in circular molecules, when the gap cannot be corrected into
a homologous region. Recircularization in the absence of a homology region by ‘‘random’
joining of free ends seems not to be, however, the major mechanism of plasmid reparation:
up to 82% of the yeast transformants recovered on transformation of a linearized ARS plasmid
contained head-to-head dimers of the plasmid,*' suggesting that yeast may possess a double-
strand break processing activity whose product is a symmetrical joint. On the other hand,
high frequency deletion (up to 80%) of sequences flanked by direct repeats as short as 23
bp was observed on transformation of Y. lipolytica by circular plasmids:*' deletions occurred
during the transformation process and not during subsequent growth.



4 Molecular Biology and Genetic Engineering of Yeasts

C. MARKER GENES

Marker genes used for Saccharomyces cerevisiae transformation are generally biosyn-
thetic genes which complement the corresponding auxotrophy in the recipient. Several
resistance genes have been developed and are described in Chapter 10. S. cerevisiae genes
have been widely used for complementing auxotrophs of other yeast species (reviewed in
Reference 6), although homologous genes are preferred whenever possible, e.g., ura4 in
Schizosaccharomyces pombe,'* LEU2 in Y. lipolytica,"® HIS4 in Pichia pastoris,** ADE2 in
Candida albicans.*> Whereas homologous genes of defined function are relatively easy to
isolate by complementation of known Saccharomyces cerevisiae or E. coli mutants, isolation
of suitable auxotrophs is generally less straightforward in nonconventional yeasts and may
require prior obtention of a rather large collection of mutants. These must then be screened
for the loss of the chosen enzymatic activity. Alternatively, suitable recipients may be
identified by complementation after transformation: this permitted identification of trp/
mutants of K. lactis,” of his4 mutants in P. pastoris,** and of leu2 and lys2 mutants in C.
maltosa.**** Genes conferring resistance to two antibiotics have also been used in noncon-
ventional yeasts, e.g., G418® in K. lactis,® phleomycin® in Y. lipolytica.*® Heterologous
genes permitting use of normally nonassimilated carbon sources have been reported for both

47,48

Y. lipolytica and P. pastoris.
II. GENE MANIPULATION WITH INTEGRATIVE VECTORS

A. BASIC FEATURES OF INTEGRATIVE TRANSFORMATION

Plasmids carrying a DNA sequence homologous to the chromosome and devoid of yeast
origin of replication preferentially integrate by homologous recombination via a Campbell-
like mechanism in 80% or more of the transformants tested in S. cerevisiae.'” This gencrates
a duplication of the target sequence on both sides of the plasmid (see Figure 1). Several
plasmids may cointcgrate in a tandem array.*® Cointegrates have been observed at a high
frequency (up to 50% at certain loci, e.g., LEU2).5%°" Integrated plasmids are mitotically
quite stable and are faithfully segregated through meiosis.'® Occasional reexcision of the
plasmid by homologous recombination between the flanking sequences® or by sister chro-
matid exchange*”>* occurs at low frequency (around 107*), but this efficiency may be site
dependent. Sister chromatid exchange between tandemly repeated copies generates one
chromatid with a single copy (excision of the vector) and one chromatid with three copies.
Such amplifications do occur spontaneously at the same rate as excisions™ and can be
selected using markers showing a strong dosage effect like CUPL.™ Multiple tandem in-
tegration in S. cerevisiae,™ in Y. lipolytica,* or in Hansenula polymorpha™ tends to be
stable in mitosis but is lost at high frequency at meiosis.

Conversion events (i.e., transfer of genetic information from the plasmid to the chro-
mosome without integration of the plasmid) occur in 10 to 20% of the cases in S. cerevisiae
but may represent the major outcome in Schizosaccharomyces pombe when the selected
marker is a homologous gene.”” Gene conversion events can be increased up to 80% in
Saccharomyces cerevisiae when the plasmid is cut outside the homology region.*

Out of site integrations are observed at a very low rate in yeasts and may actually
represent integration into short or imperfect regions of homology fortuitously reiterated
through the genome.' This may account for the observation that with vectors which do not
show homology to the genome, transformants do occur by ‘‘random’ integration in the
genome: such events are rare in S. cerevisiae, but occur at quite a high rate in Schizosac-
charomyces pombe .7 =

The frequency of integration of circular plasmids is low, typically yiclding. in all yeast
systems studied. | to 10 transformants per microgram ot input DNA. Cutting the plasmid
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FIGURE 1. Schematic representation of homologous recombination of an in-
tegrative vector into its chromosomal target. The asterisks indicate mutations, the
thin line is pBR322, and the thick line is yeast DNA. (From Kingsman, S. M.
and Kingsman, J. A., in Genetic Engineering, Blackwell Scientific Publications,
Oxford, 1988, 64. With permission.)

within the homology region increases transformation frequencies by a factor of 100 to several
thousand in Saccharomyces cerevisiae,*® P. pastoris,® Y. lipolytica," and Schizosacchar-
omyces pombe.*” Occasionally, no dramatic increase in the transformation frequency is
observed.?” This may reflect proximity of the mutated site in the chromosome and of the
cut site in the plasmid. Plasmid integration in (and repair on) the chromosome involves
widening of the gap on the plasmid and formation of heteroduplex tracts adjacent to the
break region over hundreds of nucleotides® in Saccharomyces cerevisiae: mutations present
in the chromosome can then be transferred to the plasmid and reduce the (apparent) number
of transformants obtained (this has been used to retrieve mutated alleles, see bclow). The
cut must furthermore leave sufficient homology on its sides, so that gap widening will not
extend past the homology border on the plasmid. Site-directed integration has been obtained
with cut plasmids leaving 170 bp of homology on one side, but not with 41 bp.*® Almost
complete loss of plasmid information occurs within the first 10 bp flanking the break, and
half maximal rescue is observed with 300 bp.*?

Complex plasmids carrying more than one region of homology with the chromosome
can be targeted efficiently to only one of the possible targets by cutting the plasmid into the
corresponding sequence on the plasmid as shown initially by Orr-Weaver et al.* with a
vector carrying the sup3* and HIS3 genes of this yeast.

Targeted integration has been used to retrieve mutant genes. In its simplest version, a
plasmid carrying a wild-type gene is integrated at the mutated chromosomal locus using an
enzyme which cuts close to one extremity of the gene. Transformants carrying an integrated
plasmid at the locus are identified by Southern analysis, and their genomic DNA is then
digested by an enzyme which cuts at the other extremity of the gene. This excises the plasmid
and the flanking chromosomal copy which is recircularized in vitro and rescued in E. coli.
In a different version (see Figure 2) the plasmid is integrated via a sequence flanking the
gene of interest, and the genome is digested with an enzyme which cuts outside the gene



