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Preface

This book is written for the beginner—someone who has no prior training
in the field. It began as a series of summer tutorial lectures that I gave to
my research group to familiarize them with the preparation and characteri-
zation of porous silicon. I found that the traditional undergraduate chem-
istry, biochemistry, bioengineering, physics, or materials science curriculum
does not prepare one to work with porous silicon—most of my students
would come into the group with no understanding of the electrochemical
methods needed to carry out its synthesis, little appreciation for the funda-
mental semiconductor physics, electronics, chemistry, and optics principles
needed to exploit its properties, and a sizable fear of the hydrofluoric acid
used in its preparation. The tutorials resulted from my frustration that the
basic conceptual and experimental “tricks of the trade” were not being
passed from one student to the next. My goal was to provide my students
with all that I thought they needed to know to get started in their research
projects and survive the grilling of their second year oral committee. 1
provided laboratory “homework” experiments to get the students comfort-
able with the equipment and the techniques we use. The experiments in
Chapters 1-5 are a direct result of these homework assignments. They are
structured, step-by-step procedures with well-characterized results. I wrote
them to allow me to correct obvious errors in laboratory technique or
understanding before the student embarked on his or her independent
research project, where errors are not as easily caught and carry significant
consequences. The large increase in interest in porous silicon in the past
few years, and the numerous email messages I have been receiving from
students in groups around the world, asking me for details of our synthetic
and optical analysis methods, gives me hope that more than my own
research group members will make use of this material.

In the summer of 2004 I was fortunate to meet Esther Levy from Wiley-
VCH, who, along with Martin Ottmar, encouraged me to convert my tuto-
rial into a book. I thank them and the rest of the publishing team at
Wiley-VCH for their patience during the several years spanning the writing
and production of this work.
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Preface

Many of my coworkers and collaborators contributed the ideas, concepts,
and images that make up a large part of this book. In particular, I thank
Gordon M. Miskelly, Giuseppe Barillaro, Andrea Potocny, Manuel Orosco,
Sophia Oller, Ester Segal, M. Shaker Salem, Yukio H. Ogata, Stephanie
Pace, Frederique Cunin, Jean-Marie Devoiselle, Luo Gu, Joseph Lai, Emily
Anglin, Beniamino Sciacca, Michelle Y. Chen, Sara Alvarez, Anne M.
Ruminski, Adrian Garcia Sega, and Vinh Diep.

Finally, I thank my family for putting up with the late nights, early morn-
ings, and missed dinner appointments they suffered as I went through this
process.

La Jolla
August 2011
Michael J. Sailor
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1
Fundamentals of Porous Silicon Preparation

1:1
Introduction

Porous silicon was accidentally discovered by the Uhlirs, a husband and
wife team working at Bell Laboratories in the mid 1950s. They were trying
to develop an electrochemical method to machine silicon wafers for use in
microelectronic circuits. Under the appropriate electrochemical conditions,
the silicon wafer did not dissolve uniformly as expected, but instead fine
holes appeared, propagating primarily in the <100> direction in the wafer.
Since this did not provide the smooth polish desired, the curious result was
reported in a Bell labs technical note [1], and then the material was more
or less forgotten. In the 1970s and 1980s a significant level of interest arose
because the high surface area of porous silicon was found to be useful as
a model of the crystalline silicon surface in spectroscopic studies [2-5], as
a precursor to generate thick oxide layers on silicon, and as a dielectric layer
in capacitance-based chemical sensors [6].

Interest in porous silicon, and in particular in its nanostructure, exploded
in the early 1990s when Ulrich Goesele at Duke University identified
quantum confinement effects in the absorption spectrum of porous silicon,
and almost simultaneously Leigh Canham at the Defense Research Agency
in England reported efficient, bright red—orange photoluminescence from
the material [7, 8]. The quantum confinement effects arise when the pores
become extensive enough to overlap with each other, generating nanometer-
scale silicon filaments. As expected from the quantum confinement rela-
tionship [9], the red to green color of photoluminescence occurs at energies
that are significantly larger than the bandgap energy of bulk silicon (1.1eV,
in the near-infrared).

With the discovery of efficient visible light emission from porous silicon
came a flood of work focused on creating silicon-based optoelectronic
switches, displays, and lasers. Problems with the material’s chemical and
mechanical stability, and its disappointingly low electroluminescence effi-
ciency led to a waning of interest by the mid 1990s. In the same time period,
the unique features of the material—large surface area, controllable pore

Porous Silicon in Practice: Preparation, Characterization and Applications, First Edition.
Michael J. Sailor.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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sizes, convenient surface chemistry, and compatibility with conventional
silicon microfabrication technologies—inspired research into applications
far outside optoelectronics. Many of the fundamental chemical stability
problems have been overcome as the chemistry of the material has matured,
and various biomedical [10-18] sensor, optics, and electronics applications
have emerged [10].

Porous silicon is generated by etching crystalline silicon in aqueous or
non-aqueous electrolytes containing hydrofluoric acid (HF). This book
describes basic electrochemical and chemical etching experiments that can
be used to make the main types and structures of porous silicon. Beginning
with measurement of wafer resistivity, the experiments are intended for the
newcomer to the field, written in the form of detailed procedures, including
sources for the materials and equipment. Experiments describing methods
for characterization and key chemical modification reactions are also pro-
vided. The present chapter gives an overview of fundamentals that are a
useful starting point to understand the theory underlying the experiments
in the later chapters.

1.2
Chemical Reactions Governing the Dissolution of Silicon

The formation of porous silicon involves reactions of Si-Si, Si-H, Si-O,
and Si—F bonds at the surface of the silicon crystal. The relative strengths
of these bonds, obtained from thermodynamic measurements of molecular
analogues, are given in Table 1.1. While one might think that the strengths
of these bonds would determine the relative stability of each species on a
silicon surface, the electronegativity of the elements plays a much more
important role. Si—-H and Si—C species tend to passivate the silicon surface
in aqueous solutions, while the Si—F bond is highly reactive. Electronegative
elements such as O and F form more polar Si-X bonds, making the silicon

Table 1.1  Enthalpies of some Si—X bonds.

Compound Bond Enthalpy, kcal mol™
Me;Si-SiMe; Si-Si 79
Me;Si—CH; Si-C 94
Me,Si-H Si-H 95
Me;Si—-OMe; Si-O 123
Me;Si—F Si-F 158

Taken from Robin Walsh, Gelest Catalog: www.gelest.com



1.2 Chemical Reactions Governing the Dissolution of Silicon

atom susceptible to nucleophilic attack. The surface of freshly prepared
porous silicon is covered with a passivating layer of Si—H bonds, with minor
quantities of Si—F and Si—O species.

1.2.1
Silicon Oxides and Their Dissolution in HF

Silicon is thermodynamically unstable in air or water, and it reacts sponta-
neously to form an oxide layer. The oxide can be nonstoichiometric and
hydrated to various degrees, though the simple empirical formula is silicon
dioxide, SiO, (Equation 1.1). SiO, is a key thermodynamic sink in the silicon

system.
Si+0, — Si0, (1.1)

SiO, is an electrical insulator that forms passivating films on crystalline
silicon; preparation of porous silicon thus requires an additive in the solu-
tion to dissolve the oxide and allow electrochemical oxidation to continue.
The Si-F bond is the only bond stronger than Si—O, and it is the Si—F bond
enthalpy that drives the main chemical dissolution reaction used to make
porous silicon. In the presence of aqueous HF, SiO, spontaneously dis-
solves as SiF,~ (Equation 1.2).

Si0,+6 HF — SiF +2 H' +2 H,0 (1.2)

The reaction of SiO, with HF is a common industrial reaction. It is used
to prepare frosted glass from plate glass and to remove SiO, masking layers
in the processing of silicon wafers in microelectronics. The silicon hexafluo-
ride ion (SiF") is a stable dianion that is highly soluble in water. Thus fluo-
ride is the most important additive used in the preparation of porous
silicon, dissolving the insulating oxide that would otherwise shut down the
electrochemical corrosion reaction.

1:2.2
Silicon Oxides and Their Dissolution in Basic Media

In the absence of fluoride ion, SiO, on the surface of a silicon wafer protects
the underlying silicon from further oxidation. While this is true in acidic
or neutral aqueous solutions, in basic solutions hydroxide ions attack and
dissolve the oxide by Equation 1.3:

$i0, +2 OH™ — [SiO,(OH), |~ (1.3)
The net dissolution reaction for silicon in basic media then becomes:

Si+2 OH™ +2 H,0 —[SiO,(OH),]* +2 H, (1.4)

3
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The reaction represented by Equation 1.3 is highly simplified. The species
[Si0O,(OH),]", the doubly protonated form of silicic acid, is only one of many
water-soluble forms of silicon oxide. The fundamental oxide-containing
unit is the SiO} tetrahedron, known as the orthosilicate ion [11]. Orthosili-
cate itself is highly basic, and in aqueous solutions it is never present as
the naked SiOj~ ion. The fully protonated species is orthosilicic acid,
Si(OH),, and this is the generic formula that is often presented in the lit-
erature to indicate all the water-soluble forms of silicic acid. The first ioniza-
tion constant (pK.) of Si(OH), is about 10, and the second (pK.) is around
12. Thus the [SiO,(OH),]* ion depicted in Equation 1.3 is only present in
highly basic (pH > 12) solutions. In neutral or acidic solutions, Si(OH), is
the predominant monomeric form.

When the solution concentration of Si(OH), is sufficiently large, silicic
acid condenses into oligomers. Various “polysilicic acids” with the general
formula [SiO,(OH), ,.],, where 2 > x > 0, are present in solution [11]. In
neutral or acidic solutions these oligomers can condense to the point of
precipitation, essentially the reverse of Equation 1.3:

Si(OH), — SiO, +2 H,0 (1.5)

The reaction represented in Equation 1.5 is the key reaction in the “sol-gel”
process, often used to prepare colloids, films, or monoliths of porous silica
from solution precursors [12]. The insolubility of SiO, in acidic solutions
explains why elemental silicon does not corrode appreciably at pH < 7; the
oxide provides a protective, passivating layer. The same is not true in basic
solutions; here the solubility of silicon oxide drives silicon oxidation and
dissolution by Equation 1.4. The high surface area and relatively strained
nature of Si—Si bonds in porous silicon make the reaction with hydroxide
ion quite rapid. In Chapter 2 we will employ this reaction (using aqueous
KOH) to dissolve a porous silicon layer in order to determine its porosity.
The Si-Si bonding in bulk silicon is less strained, and bulk silicon dissolves
more slowly in basic solutions. In these and other situations where the oxide
is soluble, dissolution of silicon becomes limited by surface Si—-H species.

1.2.3
Silicon Hydrides

The reaction of silicon with water should be analogous to the reaction of
metallic sodium in water; elemental silicon is electropositive enough to
spontaneously liberate hydrogen from water. However, silicon does not
dissolve in acidic solutions, even if the solution contains fluoride ion to
remove the passivating SiO, layer. Although thermodynamically feasible,
dissolution of silicon in aqueous HF is slow unless strong oxidizing agents
(such as O, or NOj) are present in the solution, or unless the oxidation
reaction is driven by electrochemistry. The reason is that corrosion becomes
kinetically limited by the passivating nature of surface hydrides.



1.3 Experimental Set-up and Terminology for Electrochemical Etching of Porous Silicon
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Figure 1.1
Hydrides on the porous silicon surface. fluorides are removed by the HF
The freshly etched surface of porous electrolyte. Three types of surface hydrides
silicon is terminated primarily with are depicted: SiH, SiH,, and SiH,.

hydride species. Residual oxides or

When silicon is chemically or electrochemically etched in HF-containing
solutions, the exposed silicon surface becomes terminated with H atoms
(Figure 1.1). The mechanism of this reaction is described in more detail
later in this chapter. The surface Si—H species are not readily removed by
acid, and they must be oxidized to allow the silicon corrosion reaction to
continue. In alkaline solutions, OH™ is able to attack these species because
it is a good nucleophile. Nucleophilic attack is an important reaction in the
silicon system, and it is discussed in more detail in Chapter 6. The Si-H
species on porous silicon can also be removed by the action of a cationic
surfactant, which polarizes the surface and induces nucleophilic attack by
water, even in acidic solutions [13]. This reaction is also discussed in
Chapter 6.

1.3
Experimental Set-up and Terminology for Electrochemical Etching of

Porous Silicon

In an electrochemical reaction, two electrodes are needed. One supplies
electrons to the solution (the cathode) and the other removes electrons from
the solution (the anode). It is important to keep in mind that the two elec-
trodes are required to maintain charge neutrality and to complete the
electrical circuit. Regardless of the oxidation or reduction reactions occur-
ring at the electrodes, you cannot perform electrochemistry if you do not
complete the circuit. This means that at least two reactions are occurring
simultaneously in an electrochemical cell, the anode (oxidation) reaction
and the cathode (reduction) reaction. Electrochemists refer to these as “half-
reactions.” A schematic of a two-electrode cell for etching silicon, with the
relevant half-reactions, is shown in Figure 1.2.
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