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Preface

The need of optimal partition arises from many real-world problems in-
volving the distribution of limited resources to many users. An important
example is the “clustering” problem whose goal is to partition the data into
clusters to minimize the intra-cluster distances and to maximize the inter-
cluster distances. This book is the first attempt to collect all theoretical
development on the topic of optimal partition to a single source. In fact,
it does much more than simply collecting the results; it provides a general
framework to unify these results and presents them in an organized and
simplified way. There are also many new results in this book.

Because of its size, this book is partitioned (optimally, we hope) into two
volumes. Volume 1 focuses on single-parameter partition problem where
each element in the set to be partitioned is represented by a single param-
eter, i.e., a 1-dimensional point. We develop basic theory and methods to
attack the optimal partition problem as a foundation to solve the multi-
parameter partition problem in Volume 2. However, partition points in a
multi-dimensional space have some fundamental differences from partition-
ing points in a line. For example, points in a line can be linearly ordered,
but no such natural order exists for points in high-dimensional space, forc-
ing the development of theory and methods unique to Volume 2.

We also collect a set of optimal-partition problems which have been
discussed in the literature in the first chapter of Volume 1, and use the
results in this book to give solutions to these problems (or explaining why
they can’t be solved) in the last chapter of Volume 2.

Earlier and shorter versions of this book have been taught thrice
by the first author as a l-year graduate course in National Chiao-Tung
University. Many students were able to do research and to solve problems
which were open then but now a part of the literature cited in this book.

vii
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Chapter 1

Formulation and Examples

The first chapter is devoted to the introduction of a framework of reference
for partition problems. In particular, partition problems are classified by
three main characteristics: (i) the set of partitions over which an optimiza-
tion problem takes place, (ii) the number of characteristics associated with
each of the partitioned elements, and (iii) the objective function that is
to be optimized. Further, 15 examples from diverse areas are introduced
to demonstrate the expressive power of partition problems. Some of these
examples are known as NP-hard, implying that the development of efficient
solution methods is unlikely. Still, we show in Chapter 12 how the theory
we develop can be used to solve most of these examples rather efficiently.
Some of the examples we mention have broad modelling potential that is
useful to describe complicated situations. The description of these examples
in the current chapter focuses on basic scopes of the models. More general
or more complicated variants of the models will be provided in Chapter 12
(along with the corresponding solution methods).
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1.1 Formulation and Classification of Partitions

Consider a finite set A of distinct positive integers (for most of our de-
velopment N = {1,...,|N|}). A partition of N is a finite collection of
sets m = (m1,...,mp) Where my,...,m, are pairwise disjoint nonempty sets
whose union is A. In this case we refer to p as the size of m, and to the
sets m1,...,mp as the parts of w. Further, if ny,...,n, are the sizes of
T1,...,Tp, respectively, we define the shape of 7 as the vector (ni,...,np);
of course, in this case Z;’zl n; = |[N|. We sometimes add prefix “p-” or
“(n1,...,mp)-" to explicitly express the size or shape of a partition, refer-
ring to a p-partition of N or to an (ni,...,np)-partition of N'. Further, for
brevity, we frequently omit the reference to the set N as the partitioned set,
and simply refer to partitions. In our development, we sometimes require
that partitions’ parts are nonempty while at other times this requirement
is relaxed.

At times, we restrict attention to the set of all partitions or to the set of
all partitions whose size or shape satisfies prescribed restrictions; we refer,
respectively, to open, constrained-size and constrained-shape sets of parti-
tions. If the restrictions on the size or shape are expressed by prescribing a
single element, then we refer to as single-size or single-shape sets of parti-
tions and if the restrictions are in terms of lower and upper bounds on the
size or shape we refer to as bounded-size or bounded-shape sets of partitions,
respectively. Note that all of the above classes of sets of partitions can be
treated as special cases of a constrained-shape class. Their respective names
simply emphasize the kind of constraints on the shapes. For example, the
class of p-partitions collects those partitions with p (nonempty) parts, and
the class of open partitions collects all partitions without restriction on the
number of (nonempty) parts. Thus, we will treat the constrained-shape
class as the most general class. Still, the general framework of constrained-
shape sets of partitions does not appear in the forthcoming development and
whenever constrained-shape partition problems are mentioned, all shapes
have the same size; consequently, we shall use the terminology “constrained
shape” for set of partitions with restricted shapes that have the same size
(though formally, these are single-size constrained-shape sets of partitions).
Sometimes, we casually use the above adjectives that describe sets of par-
titions to partitions that belong to the corresponding given sets.

Let the (partitioned) set AN be given and let n = |[N|. When a single-
size set of partitions is considered, the prescribed single-size is given as
a positive integer p. Given a positive integer p and a set I' of positive
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integer-vectors (n1,...,n,), each satisfying 2§:1 n; = n, let II' be the
corresponding constrained shape partitions, that is, all partitions with
shape in I'. In particular, if I' consists of a single vector (ni,...,np),
we use the notation II(™1:~7#) for (the single-shape set of partitions) IIF.
Also, if L and U are nonnegative integer p-vectors satisfying L < U and
Z;’zl L <n < Z;’zl Uj, we let T(2U) denote the set of nonnegative
integer-vectors (ni,...,n,) satisfying L; <n; < U; for j =1,...,p; in this
case, we use the notation II(&:Y) for (the bounded-shape set of partitions)
™" (The restrictions on L and U assure that TZ:U) and (V) are
nonempty.) Note that single-size and single-shape sets of partitions are
instances of bounded-shape sets obtained, respectively, by setting L; = 1
and U; = n for all j or L; = U; = n; for all j. Similarly, open and single-
size sets partitions are instances of bounded-size sets. The hierarchy of the
classification of partitions is summarized in Table 1.1.1.

Table 1.1.1: Classification of sets of partitions

open | constrained-size | constrained-shape (size given)
bounded-size | bounded-shape (size given)
single-size single-shape

A multiset is a group of elements where each element is allowed to have
multiple occurrence. The formal notation of a multiset has double brackets,
e.g., {{1,1,2,2,3}}, or is given as a bracketed list of distinct elements with
superscripts designating their duplications, e.g., {12,22,3}. However, at
times, we abuse notation and use single brackets, e.g., {1,1,2,2,3}.

It is implicitly assumed in the above definitions that the parts of par-
titions are distinguishable. But, in some applications the parts are indis-
tinguishable and can be permuted without any restrictions. Thus, we also
consider unlabeled partitions. Specifically, an unlabeled partition of N is a
finite collection of sets 7 = {1, ..., 7, } where the 7;’s are as above. Again,
we refer to p and to the sets mq,..., 7T, as the size and the parts of 7, re-
spectively. Further, if ni,...,n, are the sizes of my,...,m,, respectively,
we define the shape of m as the multiset {{ni,...,np}}; again, we must
have that %_; n; = |N|. In the literature, unlabeled partitions are com-
monly referred to as allocations. While we reserve the term “partitions”
for labeled ones, we sometimes refer to labeled partitions (when potential
ambiguity may arise).

We apply the same classification to sets of unlabeled partitions as we
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do to sets of labeled ones; see Table 1.1.1. Single-shape and bounded-
shape sets of unlabeled partitions are defined, respectively, by a multiset
{{n1,...,np}} or a multiset of pairs {{(L1,U1),...,(Lp,Up)}}; the spec-
ification or the bounds on the sizes of the parts of partitions then hold
for some labeling of the parts. Frequently, as parts of unlabeled parti-
tions are indistinguishable, sizes and bounds of unlabeled partitions are
uniform, namely all parts have the same size and a multiset of bounds
{{(L1,0n),...,(Lp,Up)}} consists of p identical pairs.
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1.2 Formulation and Classification of Partition Problems
over Parameter Spaces

In this section, we introduce the framework for partition problems over
parameter spaces which are the main goal of this book. Specifically, a
partition problem concerns the selection of a partition 7 out of a given
set II of partitions so as to optimize (that is, minimize or maximize) an
objective function F' that is defined over II.

We assume throughout that each element i of the partitioned set A/
is associated with a vector A* € IR? where d is a fixed positive integer
(independent of 7); we refer to the coordinates of A* as parameters or char-
acteristics associated with i. The vectors Al,..., A® are part of the data
of the problem and are given in the form of a real d x n matrix A. For
a subset S of N = {1,...,n}, AS is the submatrix of A consisting of the
columns of A indexed by S, ordered as in A. Also, we use “bars” over
matrices, to denote the multiset consisting of their columns, for example,
a subset S of N = {1,...,n}, AS is the set of columns of AS, accounting
for multiplicities.

An objective function F(-) that is to be maximized (or a cost function
that is to be minimized). It associates a value F(m) to each (feasible) p-
partition 7 and this value depends on the parameters of the elements that
are assigned to each part. In the most general case we consider, for each
positive integer v, a column-symmetric function h, : R**” — IR?, defined

over multisets of v d-vectors, functions g; : R? —» IR™, j=1,...,pand a
function f, : R**? — IR%. Then the value F(r) associated with partition
m having shape (ni,...,np) is given by

F(ﬂ-) = fP (gl [hnl (F)L sle s :gp[h“np (E)]) . (121)

The functions hy; can, in fact, depend on the location within the variables
of fp, that is, on the index j; also, the functions g; may depend on n;.
In many common applications, each of the functions h,; is the summation
function, in which we refer to the corresponding problems as sum-partition
problems. When h, or g; is independent of the indexing parameter, we drop
the index. Also, when referring to partitions of common size we drop the
subscript “p” of f,. We call f, additive if f, is the sum function. It is also
possible to consider partition problems where the domain of the functions
hy, consists of ordered lists (and the functions hy,; are not symmetric).
For a more concise form of sum-partition problems, we introduce some
notation. For a d x n real matrix A and a p-partition # = (my,...,7p) of
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N, we define the m-summation-matriz of A, denoted A, by

Ar= D AN A eRPP, (1.2.2)
tem tem,
where the empty sum is defined to be 0 (here and elsewhere in this book).
When each of the g;’s is the identity over IR¢, the objective function F
associates with partition 7 the value F(7) with the representation

Fir) = fp(Ax) (1.2.3)
(as was already mentioned, when the optimization over partitions concerns
only partitions of fixed size p, the dependence of the functions f, on p is
suppressed and we refer only to a real-valued function f on IRP).

Of particular interest is the case where all A*’s have a common coordi-
nate, say the first one, and it equals 1 for each A'. In this case row 1 of A,
is the shape of 7. It follows that (1.2.3) allows for the objective function F'
to depend on the shape of partitions. Of course, for single-shape problems,
the part-sizes (that is, the coefficients of the shape) are fixed and can be
viewed as parameters of the objective function.

In summary, the three major characteristics by which partition problems
are classified are:

(1) The family of partitions IT over which the function F' (with representa-
tion as in (1.2.1) or (1.2.3)) is considered and optimized: Using the clas-
sification of families of partitions provided in Table 1.1.1, we shall refer
to open, constrained-size, bounded-size, single-size, constrained-shape,
bounded-shape, and single-shape partition problems; of course, there is a
natural hierarchy of this characteristic: single-shape and single-size are
instances of bounded-shape which is an instance of constrained-shape.
In addition, we refer to relazed-size problems as single-size problems
which allow for empty parts. Further, the description of the set II of
(feasible) partitions has to specify whether empty parts are allowed or
are prohibited.

(2) The number of parameters associated with each of the partitioned el-
ements: We shall refer to single-parameter problems, two-parameter
problems and multi-parameter problems.

(3) The objective (cost) function F as expressed by (1.2.1): Adjectives like
“sum-,” “max-" or “mean-" of partition problems reflect properties of
h, while properties of f, like “linear,” “convex,” “Schur convex” and
“separable,” reflect properties of fp; e.g., we refer to sum-partition
problems with f Schur convex.



