‘, Encyclopedia of Mathematics and Its Applications 147

l

- TOPICS IN
STRUCTURAL
GRAPH THEORY

" CAMBRIDGE




Topics in Structural Graph Theory

Edited by

LOWELL W. BEINEKE
Indiana University—Purdue University
Fort Wayne

ROBIN J. WILSON
The Open University
and Pembroke College, Oxford University

Academic Consultant

ORTRUD R. OELLERMANN
siryof Winmipeg——=-

lprrivrer:
u. ] 4
,f’)“i)\ SANECHI

o 1o
-..{-...

BB CAMBRIDGE

naﬂ: UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521802314

(© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2013
Printed and bound in the United Kingdom by the MPG Books Group
A catalogue record for this publication is available from the British Library
Library of Congress Cataloging in Publication Data

Topics in structural graph theory / edited by Lowell W. Beineke, Robin J. Wilson.
p. cm. — (Encyclopedia of mathematics and its applications ; 147)
ISBN 978-0-521-8023 -4 (Hardback)
1. Graph theory—Data processing. 1. Beineke, Lowell W. I1. Wilson, Robin J.

QA166.T645 2013
511".5-dc23
2012022109

ISBN 978-0-521-80231-4 Hardback

Every effort has been made to secure necessary permissions to reproduce copyright
material in this work, though in some cases it has proved impossible to trace copyright
holders. If any omissions are brought to our notice, we will be happy to include
appropriate acknowledgements on reprinting.

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.



Topics in Structural Graph Theory

The rapidly expanding area of structural graph theory uses ideas of connectivity to explore various
aspects of graph theory, and vice versa. It has links with other areas of mathematics, such as design
theory, and is increasingly used in such areas as computer networks where connectivity algorithms are an
important feature.

Although other books cover parts of this material, none has a similarly wide scope. Ortrud R.
Oellermann (Winnipeg), internationally recognized for her substantial contributions to structural graph
theory, acted as academic consultant for this volume, helping to shape its coverage of key topics. The
result is a collection of 13 expository chapters, each written by acknowledged experts. These
contributions have been carefully edited to enhance readability and to standardize the chapter structure,
terminology and notation throughout. An introductory chapter details the background material in graph
theory and network flows, and each chapter concludes with an extensive list of references.

LOWELL W. BEINEKE is Schrey Professor of Mathematics at Indiana University—Purdue University
Fort Wayne, where he has been since receiving his Ph.D. from the University of Michigan under the
guidance of Frank Harary. His graph theory interests are broad, and include topological graph theory,
line graphs, tournaments, decompositions and vulnerability. With Robin Wilson he edited Selected
Topics in Graph Theory (three volumes), Applications of Graph Theory, Graph Connections, Topics in
Algebraic Graph Theory and Topics in Topological Graph Theory. Until recently he was editor of the
College Mathematics Journal.

ROBIN J. WILSON is Emeritus Professor of Pure Mathematics at the Open University, UK. He was
recently Gresham Professor of Geometry, London, and a Fellow in Mathematics at Keble College,
Oxford University, and now teaches at Pembroke College, Oxford. He graduated in mathematics from
Oxford University, and received his Ph.D. in number theory from the University of Pennsylvania. He has
written and edited many books on graph theory and the history of mathematics, including Introduction o
Graph Theory, Four Colours Suffice and Lewis Carroll in Numberland, and his research interests include
graph colourings and the history of combinatorics. He is currently President of the British Society for the
History of Mathematics.
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the founder of structural graph theory.



Foreword

Ortrud R. Oellermann

The overriding theme of this volume is connectedness in graphs. In its simplest form
a graph is connected if every two vertices are connected by some path. Karl Menger’s
celebrated theorem changed the way we think about connectedness in graphs. The
best-known version of Menger’s theorem states that the maximum number of inter-
nally disjoint paths between a given pair of non-adjacent vertices in a graph equals
the minimum number of vertices that separate the pair.

The connectivity of a graph is the minimum number of vertices whose deletion
disconnects the graph. For a given integer k, a graph is k-connected if its connectivity
is at least k. Menger’s theorem can be used to establish Whitney’s characterization
of k-connected graphs: ‘a graph is k-connected if and only if any two vertices are
connected by at least k internally disjoint paths’. Another well-known result that
follows from Menger’s theorem is Dirac’s cycle theorem: ‘in a k-connected graph
every set of k vertices lie on a common cycle’. Connectivity in graphs has given rise
to a substantial body of work on minimally and critically k-connected graphs which
is largely due to W. Mader.

An alternative formulation of Menger’s theorem states: “for given sets V and W of
vertices in a graph G and a given integer k, there are k disjoint V—-W paths in G if and
only if every V—W separating set contains at least k vertices’; this is true in particular
if V.and W are disjoint sets of k vertices. So if V and W cannot be separated by fewer
than k vertices, then there exist £ disjoint paths, where each path has one end in V
and the other end in W. If, for all such choices of V and W, one is able to specify
the ends for each path in the collection of disjoint paths, then the graph is said to be
k-linked.

W. T. Tutte’s wheel theorem states: ‘every 3-connected graph can be constructed
from a wheel graph by repeatedly either splitting a vertex or by adding an edge
between a pair of non-adjacent vertices’. Equivalently, ‘every 3-connected graph,
other than a wheel, can be reduced to a smaller 3-connected graph by either deleting
or contracting an edge’. Thus every 3-connected graph has a wheel as a minor. As a
result of Wagner’s famous conjecture, the theory of graph minors was developed by
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Neil Robertson and Paul Seymour who settled this conjecture in a series of papers.
Since then, graph minors have played a fundamental role in many areas of graph
theory, connectivity being no exception.

The theory of random graphs began in the 1960s, in a series of papers by P. Erdos
and A. Rényi. One of their best-known and influential results in this area deals
with the phase transition of the component structure in a typical random graph as
the number of edges grows from less than half of the number of vertices to more
than half.

Menger’s theorem, Dirac’s cycle theorem, Tutte’s wheel theorem, graph minors,
and Erd6s and Renyi’s work on phase transitions underpin many of the chapters in
this volume. Menger’s theorem is the basis for Chapter 1. Graphs whose connectivity
equals the maximum degree are the subject of Chapter 2. Minimally and critically
k-connected graphs and reduction methods for 3-connected graphs, first introduced
by Tutte, serve as a platform for the material of Chapter 3, and contractible edges in
k-connected graphs are further explored in Chapter 4. Dirac’s cycle theorem serves
as motivation for Chapter 5. The stronger version of the alternative formulation of
Menger’s theorem (k-linked graphs) and the work on graph minors play a fundamen-
tal role in Chapters 6 and 7. Measures of connectedness other than the connectivity
are explored in Chapters 1, 7, 8 and 9. The work of Erd6s and Renyi on random
graphs inspired the results presented in Chapter 10. Network reliability depends on a
probabilistic approach to connectedness in graphs and is the subject of Chapter 11. In
Chapter 12 the evolution of deterministic algorithms for finding the connectivity of
a graph are surveyed. The final chapter describes how different structures of graphs
play a fundamental role in finding the best block designs.



Preface

The field of graph theory has undergone tremendous growth during the past cen-
tury. As recently as the 1950s, the graph theory community had few members and
most were in Europe and North America; today there are hundreds of graph theorists
and they span the globe. By the mid-1970s, the subject had reached the point where
we perceived a need for a collection of surveys of various areas of graph theory:
the result was our three-volume series Selected Topics in Graph Theory, compris-
ing articles written by distinguished experts and then edited into a common style.
Since then, the transformation of the subject has continued, with individual branches
(such as graph connectivity) expanding to the point of having important subdivisions
themselves. This inspired us to conceive of a new series of books, each a collec-
tion of articles within a particular topics of graph theory written by experts within
that area. The first two of these books were the companion volumes to the present
one, on algebraic graph theory and on topological graph theory. This is thus the third
volume in the series.

A special feature of these books is the engagement of academic consultants (here,
Ortrud R. Oellermann) to advise us on topics to be included and authors to be invited.
We believe that this has been successful, with the result being that the chapters of
each book cover the full range of topics within the given area. In the present case,
the area is connectivity, also called structural graph theory, with chapters written by
authors from around the world. Another important feature is that, to the extent pos-
sible, we have imposed uniform terminology and notation throughout, in the belief
that this will aid readers in going from one chapter to another. For a similar reason,
we have not tried to remove a small amount of material common to some of the
chapters.

We hope that these features will facilitate usage of the book in advanced courses
and seminars. We sincerely thank the authors for cooperating in these efforts, even
though it sometimes required their abandoning some of their favourite conventions
— for example, computer scientists commonly use the term node, whereas graph the-
orists use vertex; not surprisingly, the graph theorists prevailed on this one. We also
asked our contributors to endure the ordeal of having their early versions subjected
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to detailed critical reading. We believe that as a result the final product is thereby
significantly better than it would otherwise have been (as a collection of individual
chapters with differing styles and terminology). We want to express our heartfelt
appreciation to all of our contributors for their cooperation in these endeavours.

We extend special thanks to Ortrud Oellermann for her service as Academic
Consultant — her advice has been invaluable. We are also grateful to Cambridge Uni-
versity Press for publishing these volumes; in particular, we thank Roger Astley for
his advice, support, patience and cooperation. Finally we extend our appreciation to
several universities for the ways in which they have assisted with our project: the first
editor (LWB) is grateful to his home institution of Indiana University—Purdue Uni-
versity Fort Wayne and also to Purdue University for an award of sabbatical leave
during which he was a guest of the Mathematical Institute at Oxford University,
while the second editor (RJW) has had the cooperation of the Open University as
well as Keble College and Pembroke College, Oxford.

LOWELL W. BEINEKE
ROBIN J. WILSON
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Preliminaries

LOWELL W. BEINEKE and ROBIN J. WILSON

1. Graph theory

2. Connectivity

3. Flows in networks
References

1. Graph theory

This section presents the basic definitions, terminology and notation of graph theory,
along with some fundamental results. Further information can be found in the many
standard books on the subject — for example, Bondy and Murty [1], Chartrand, Les-
niak and Zhang [2], Gross and Yellen [3] or West [5], or, for a simpler treatment,
Marcus [4] or Wilson [6].

Graphs

A graph G is a pair of sets (V, E), where V is a finite non-empty set of elements
called vertices, and E is a finite set of elements called edges, each of which has two
associated vertices. The sets V and E are the vertex-set and edge-set of G, and are
sometimes denoted by V(G) and E(G). The number of vertices in G is called the
order of G and is usually denoted by n (but sometimes by |G|); the number of edges
is denoted by m. A graph with only one vertex is called trivial.

An edge whose vertices coincide is a loop, and if two edges have the same pair
of associated vertices, they are called multiple edges. In this book, unless otherwise
specified, graphs are assumed to have neither loops nor multiple edges; that is, they
are taken to be simple. Hence, an edge e can be considered as its associated pair of
vertices, ¢ = {v, w}, usually shortened to vw. An example of a graph of order 5 is
shown in Fig. 1(a).

The complement G of a graph G has the same vertices as G, but two vertices
are adjacent in G if and only if they are not adjacent in G. Fig. 1(b) shows the
complement of the graph in Fig. 1(a).
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@) (b)

Fig. 1.

Adjacency and degrees

The vertices of an edge are its endpoints and the edge is said to join these vertices.
An endpoint of an edge and the edge are incident with each other. Two vertices that
are joined by an edge are called neighbours and are said to be adjacent; if v and w
are adjacent vertices we sometimes write v ~ w, and if they are not adjacent we
write v~ w. Two edges are adjacent if they have a vertex in common.

The set N (v) of neighbours of a vertex v is called its neighbourhood. If X < V,
then N (X) denotes the set of vertices that are adjacent to some vertex of X.

The degree degv, or d(v), of a vertex v is the number of its neighbours; in a
non-simple graph, it is the number of occurrences of the vertex as an endpoint of
an edge, with loops counted twice. A vertex of degree O is an isolated vertex and
one of degree 1 is an end-vertex or leaf. A graph is regular if all of its vertices have
the same degree, and is k-regular if that degree is k; a 3-regular graph is sometimes
called cubic. The maximum degree in a graph G is denoted by A(G), or just A, and
the minimum degree by §(G) or §.

Isomorphisms and automorphisms

An isomorphism between two graphs G and H is a bijection between their vertex-
sets that preserves both adjacency and non-adjacency. The graphs G and H are
isomorphic, written G = H, if there exists an isomorphism between them.

An automorphism of a graph G is an isomorphism of G with itself. The set of all
automorphisms of a graph G forms a group, called the automorphism group of G and
denoted by Aut(G). A graph G is vertex-transitive if, for any vertices v and w, there
is an automorphism taking v to w. It is edge-transitive if, for any edges e and f, there
is an automorphism taking the vertices of e to those of f. It is arc-transitive if, given
two ordered pairs of adjacent vertices (v, w) and (v, w’), there is an automorphism
taking v to v" and w to w'. This is stronger than edge-transitivity, since it implies that
for each edge there is an automorphism that interchanges its vertices.

Walks, paths and cycles

A walk in a graph is a sequence of vertices and edges v, e}, v1, ..., €k, v, in which
the edge e; joins the vertices v;—; and v;. This walk is said to go from vy to vk



