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preface

This book is a text for junior, senior, or first-year graduate
courses traditionally titled Foundations of Geometry and/or Non-
Euclidean Geometry. The first 29 chapters are for a semester or
year course on the foundations of geometry. The remaining chap-
ters may then be used for either a regular course or independent
study courses. Another possibility, which is also especially suited
for in-service teachers of high school geometry, is to survey the
the fundamentals of absolute geometry (Chapters 1-20) very
quickly and begin earnest study with the theory of parallels and
isometries (Chapters 21 -30). The text is self-contained, except that
the elementary calculus is assumed for some parts of the material
on advanced hyperbolic geometry (Chapters 31-34). There are
over 650 exercises, 30 of which are 10-part true-or-false questions.

A rigorous ruler-and-protractor axiomatic development of the
Euclidean and hyperbolic planes, including the classification of the
iIsometries of these planes, is balanced by the discussion about this
development. Models, such as Taxicab Geometry, are used exten-
sively to illustrate theory. Historical aspects and alternatives to the
selected axioms are prominent. The classical axiom systems of
Euclid and Hilbert are discussed, as are axiom systems for three-
and four-dimensional absolute geometry and Pieri’'s system based
on rigid motions.

The text is divided into three parts. The Introduction (Chapters
1-4) is to be read as quickly as possible and then used for ref-
erence if necessary. The formal axiomatic development begins in
Chapter 6 of Part One, Absolute Geometry (Chapters 5-25). Chap-
ter 5 contains a list of 15 models that are used throughout Part
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One in discussing the relative consistency and independence of the
axioms used in building our system. Isometries are introduced as

soon as they are useful. In fact, the existence of the reflections is
shown to be equivalent to the familiar SAS axiom. Chapter 25
shows that our five axioms for absolute geometry together with
one of the equivalents of Euclid’'s Parallel Postulate (Theorem 23.7
gives 26 such equivalents) form a categorical system. Section 25.1
contains a detailed survey of the contents of Part Two, Non-Euclid-
ean Geometry (Chapters 26 -34). Although Part Two concentrates
on hyperbolic geometry, many of the results have direct application
to Euclidean geometry as well.

The classification of the isometries of the hyperbolic plane
and, as a corollary, the classification of the isometries of the Eu-
clidean plane appear in Chapter 29 of Part Two. In order to be sure
of covering this important material in a one-semester or a two-
quarter course it is suggested that Chapter 20 be finished halfway
through the course. Chapters 10, 11, 15, and even 25 might be
assigned as outside reading, postponed, or omitted. On the other
hand, Chapter 30 should be included in such a course If time
allows. (For a semester course meeting three times a week, the
author uses the following schedule where exam days and reading
days are omitted: 1-3,4, 5,6, 7, 8,9, 9, 12, 13, 14, 16, 16, 17, 18,
19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 24, 26, 26, 27, 27, 28, 28, 28,
29, 29, 29.)

Special acknowledgment is heartily granted to my colleague
Hugh Gordon, who made many very helpful suggestions when he
was teaching from the preliminary version of this book. | am grate-
ful to Mary Blanchard, who typed the manuscript. Finally, | wish to
express appreciation to the Cambridge University Press for per-
mission to quote the statements of the definitions, axioms, and
theorems of Book 1 from its definitive publication on Euclid: The
Thirteen Books of Euclid’s Elements by T. L. Heath.



foreword 10
the student

“Thales, well known for his control of oil through a monopoly on
the olive presses, today announced the invention of a means for
obtaining knowledge. He calls the process deduction.” So began
the front page story of the Miletus Times dated July 3, 576 B.C.

An accompaning article reported the reactions of Oracle Joe to the
invention. The utterances of Oracle Joe were deemed mysterious,
as usual, and were quoted verbatim as follows: “Lines. O.J. sees
parallel lines. Some seem more parallel than others in the hyper-
bolic plane. That's Non-Euclidean geometry. Just last week O.J.
predicted that in a couple hundred years in a city near Egypt a guy
named Euclid would make a big deal about parallel lines in a book
that will endure as long as the stories of Homer. Euclid will use
deduction. This deduction thing will hurt the oracle business, but
the advice of oracles will be sought even into the Age of Aquarius.
0O.J. now sees tables, chairs, and beer mugs. Yes, it will be well
over two thousand years and in worlds yet to be discovered before
the implications and limitations of deduction begin to be fully
realized. Non-Euclidean geometry will play an important role in all
this. O.J. is never wrong—and is now open on Saturnday.” With
that we end the fantasy in this book but not, perhaps, the fantastic.
(We shall see rectangles relegated to the domain of unicorns and
pentagons with five right angles.)

There are many ways to distinguish between Euclidean and
non-Euclidean geometry. The business about parallel lines is only
one of the interrelated aspects whose totality is called the theory of
parallels. To understand the theory of parallels we must begin our
geometry almost from scratch. Thus we shall avoid the various
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traps that have ensnared mathematicians of the greatest genius.
Also, the dynamics of building an axiom system very similar to but,
in the end, vastly different from Euclid’s are as exciting as any
mystery novel. The story behind non-Euclidean geometry is one of
the fascinating chapters in man’s search for knowledge. In this text
you will learn something of this story as well as the mathematical
theory itself. For an appreciation of either, some understanding of
the other is required. For those of you who may become teachers
and feel non-Euclidean geometry is irrelevant, we quote the geom-
eter Felix Klein: “‘After all, it is in order for the teacher to know a
little more than the average pupil.”

The following method is suggested for a quick, rough self-
evaluation of your mastery of a particular chapter. After you have
studied a chapter, answer each part of the True-or-False exercise
In turn without allowing yourself to look ahead or to change an
answer. Then score yourself, using the Hints and Answers section
in the back of the book. If you missed a question because you
forgot a definition from the theory, the Index will help you find the
definition.

The author hopes that you enjoy your study of the theory of
parallels.
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INTRODUCTION

The Introduction contains the prerequisites to our
study of the foundations of geometry. In order to
begin Part One, it is sufficient that the following
questions be understood and answered: What is
an equivalence relation on a set? What is a one-
to-one mapping from one set onto another? What
does it mean to say that an axiom system is
consistent, independent, or categorical? The
Introduction answers these specific questions
and contains enough additional material so that
almost every reader will encounter something
new. It is recommended that these first four
chapters be read as quickly as possible and then
used for reference later if necessary.




chapiter
one

Equivalence Relations

1.1 LOGIC

We agree that a statement is either frue or false (Law of the Excluded
Middle) but not both (Law of Noncontradiction). Our use of “not,”
“and,” “or,” “if . . .then. . .,” and “iff” in relation to arbitrary state-
ments p and g is explained by the fruth tables in Table 1.1, where
“T” stands for true and “F” for false. In mathematics “or” is always
used in the inclusive sense. The conditional p = ¢ may be read in any
one of the following equivalent ways:

1 If p then q.
2 qifp.

3 ponly if g
4 q or not p.

o p 1s a sufficient condition for g.
6 g 1s a necessary condition for p.

The sentence “p implies ¢” means that the conditional “if p then ¢” is
true. To say “(if p then ¢) and (if ¢ then p),” we merely say “p if and
only if ¢” and write “p iff ¢” or “p <= q.”

Related to the conditional “if p then ¢” are its converse “if g
then p” and its contrapositive “if not q then not p.” It should be easy to
think of a conditional which is true but whose converse is false. On
the other hand, a conditional is true if and only if its contrapositive is
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TABLE 1.1

p q not p RpeOry pand g if p then g pift g
#— —_— —————————————————————————————
T L = T T T T

B F T F F F

F T T T F T -

3 - T F = T T

true. One way of convincing yourself of this is to observe that the fol-
lowing are all equivalent: (1) If not g, then not p. (2) (Not p) or not
(not q). (3) (Not p) or g. (4) g or not p. (5) If p, then g. Another way is
to check the truth table in Table 1.2, where the numbers at the bot-
tom indicate the order in which the columns were entered in con-
structing the table.

You intuitively know the meaning of the two quantifiers that
are used 1n basic logic. One is the existential quantifier, which may be
denoted by any one of the following: there exists, there exist, there is,
there are, for some. The other is the universal quantifier, which may
be denoted by any one of the following: for any, for all, each, every.
Actually, the universal quantifier may be logically defined in terms
of the existential quantifier and negation. For example, if p denotes
some proposition about the integers, then “for all integers, p” means
the same thing as “there does not exist an integer such that not p.”
One thing to look out for is that the little words a, an, and the are often
hidden quantifiers in English. For example, “The diameters of a circle
intersect at a point” contains three quantifiers and means that for
any circle there exists a point such that each diameter of that circle
passes through that point.

Consider the statement “If N is a positive integer, then N?—
79N + 1601 is a prime.” To prove this statement it would not be suf-
ficient to show that N2— 79N + 1601 is a prime for several values of N.
Even to show that you get a prime for the first seventy-nine positive
integers is not a proof of the statement. Actually, the statement is
false as N2— 79N + 1601 =412 when N = 80. Note that one case where
the statement is false proves that the statement is false! In other
words, it only takes one counterexample to disprove a statement.

TABLE 1.2
p q | (p>q) iff ((notq) = (notp))
T 7T T T F T 2

T F F T T “ P

F T T T P T T

F F T T T T T

- Te 3 7 4 6 5
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1.2 SETS

Most of us have heard that a set is a collection of elements. “x € A”
means that x is an element of set A; “x & A” means that x is not an
element of set A. The statement that set A i1s a subset of set B is writ-
ten “A C B” and means x € A only if x € B. The set of all positive in-
tegers is a subset of the set of all integers. Some sets can be exhibited
explicitly. For example, the set of odd digits is {1, 3,5, 7, 9}. Often
it is impractical or impossible to list the elements of a set. If R is the
set of all real numbers, we may denote the set of all positive reals by
“Yx|lx ER, x> 0}” and read “the set of all elements x such that x is a
real number and x is greater than zero.”

Let A and B be sets. The union, intersection, difference, and Car-
tesian product of A and B are defined, respectively:

AUB={x|x€A or x € B},
ANB={xlx€A and x € B},
A\B={x[x€ A but x & B},
AXB={(x,y)|lx € A, y€E B}.

Since “but” means “and” in mathematical logic, we see that A \ B is
the set of all elements of A that are not also elements of B. Note that
A X B is just the set of all ordered pairs such that the first element is
in A and the second element is in B.

If A and B are set with no element in common, then A and B
are disjoint. In this case we write “A N B=.” So J is the set which
contains no elements and is called the empty set or null set. The emp-
ty set is a subset of every set. Two sets intersect if they are not dis-
joint.

If L and R are sets, then L=R iff L C R and R C L. One may ex-
ercise his ability to use “"and” and “or” by proving the following dis-
tributive laws, where A, B, C are sets:

(AUB)NC=ANC)UBNC),
ANB)UC=AUC)N(BUL).

We may wish to speak of a set of sets. In this case the elements of
the set are subsets of some other set. For example, {{1,2,3},{3.4,5,6}}
is a set with exactly the two elements {1,2,3} and {3,4,5,6}. Note
that for general element S, we have S # {S}. In particular, & # {J}



