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Preface

It can no longer be assumed that all students of mechanics will already have met the subject before
entering higher education. Undergraduate courses must therefore be designed to interest and
challenge those students who have studied the subject before and yet to remain within the grasp of
those studying the subject for the first time. The aim of this book is to present such a course of
mechanics, introductory in nature but meeting the standards usually associated with a first year
undergraduate course. The course is suitable for both mathematicians and physicists and also for
school teachers wishing to gain further insight into the subject.

Two mathematical models of motion are introduced, namely Newton’s classical mechanics and
Einstein’s relativistic mechanics. Emphasis is placed on the understanding of concepts; topics
including inertial frames and thie equivalence of inertial mass and gravitational mass being treated
in detail. Such emphasis is not made at the expense of manipulative skills; indeed, many worked
examples and exercises are included at the end of each chapter. The general theory is developed in
three dimensions using vectors, but most of the applications are confined to two dimensions. SI
units are used throughout and, whenever possible, the symbols used are those recommended by the
Royal Society. ‘

Continuum mechanics and mathematical physics have both developed from the study of the

- motion of particles. Chapters on fluid mechanics and on Newtonian cosmology are therefore
included at the end of the book in order to illustrate these developments. Even if these chapters are
not included in the first year undergraduate courses the author would hope that they might whet
the appetite of the readers and encourage them to continue their studies into the more advanced
aspects of mechanics.

I would like to acknowledge the contribution made by my wife Carole and to thank her for typing
the manuscript and for her encouragement during the writing of this book.

Hull CDC
1980



Glossary of symbols

3

mass

inertial mass, gravitational mass, rest mass
time

position vector

centre of mass

position vector of centre of mass*
frame of reference

centre of mass framef

laboratory frame

velocity between two frames
linear momentum

angular momentum

moment of inertia about a point O
moment of inertia about an axis /
force

moment of force

moment of couple

work

total energy

potertial energy

kinetic energy

modulus of elasticity

frequency

angular frequency

periodic time

damping coefficient

coefficient of friction

viscosity

density

pressure

Reynolds number

electric charge

electric field vector

magnetic induction vector
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* The symbol-c is also used occasionally for the connecting vector between two origins O and O/, i.e. ¢ = 00",
T A bar is frequently used to denote a quantity defined relative to the centre of mass, e.g. p.



Sl units

Quantity Unit Abbreviation
length metre. m

mass kilogram kg

time second s
frequency hertz Hz (ors™ ')
force newton N (or kgms™?)
energy joule J (or kgm?s~?)
power watt W (or kgm?s~3)
angle radian rad
electric charge coulomb &
electrostatic potential volt \'
electric field Vm™!
magnetic induction tesla L3

All the equations which appear in the study of mechanics are dimensionally homogeneous, that is
the terms of each equation all have the same SI units. If any one term in an equation has different
units to the other terms then a mistake has been made - a test of accuracy which proves most useful
with experience. The fact that the equations are dimensionally homogeneous leads to dimensional
analysis, a method of solving problems which is widely used by engineers and research
mathematicians.



Physical constants

Universal constants

gravitational constant, G = (6.670+0.006) x 10~ "' m3kg~'s~?
speed of light in a vacuum, ¢ =2.997925x108ms™!
Planck’s constant, h = 6.6256 x 10" *]Js

Astronomical constants

(i) the earth '

acceleration due to gravity (at Potsdam), ¢ =9.81274ms 2
mass = 5.976 x 10** kg

equatorial radius = 6.378160 x 10°m

polar radius = 6.356775 x 10°m

average distance from the sun = 1.496 x 10'' m

(ii) the moon
mass = 7.350 x 10?2 kg
equatorial radius = 1.722x 10° m

(iii)  the sun
mass = 1.990 x 10** kg
equatorial radius = 6.960 x 10® m
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1

Mathematical modelling

1.1 General discussion

The pure mathematician is interested in studying mathematical
structures. The applied mathematician uses these mathematical
structures to describe observed phenomena. The description of
observed phenomena by known mathematical structures is
called mathematical modelling, and the mathematical
structures are said to constitute a mathematical model of the
observed phenomena. Mathematical modelling plays a central
role in many disciplines, for example in physics, chemistry, the
biological sciences, economics and environmental studies. The
crucial difference between the Arts and the Sciences is that the
scientist is interested in just those phenomena which can be
modelled mathematically. The chemist who performs an
experiment to find a reaction between substances will model his
observations in terms of a symbolic equation. The geographer
constructs mathematical models describing the growth of
population in urban and rural communities. The biologist
models birth and death processes by means of a differential
equation.

Once a mathematical model of some observed phenomena
has been formulated, then one can manipulate the mathematics
and, hopefully, predict the occurrence of some new phenomena.
It is this element of prediction which excites the interest of the
academic and which can be of benefit to society. If the
predictions are found to occur in reality then the mathematical
model is satisfactory. However, once a prediction fails to agree

with reality, then the mathematical model becomes incomplete -

and must be replaced by a more refined model. The whole
process of setting up a mathematical model of observed
phenomena and then testing the predictions against reality is
often referred to as the ‘Scientific Method’ and is usually
attributed to Descartes.

As an example of mathematical modelling, suppose that
football supporters going to a match can park their cars in
either of two cul de sacs, denoted hereafter by P, and P,. The
observed rates at which cars enter P, and P, can be modelled as
two real numbers ¢, cars/second and c, cars/second (see Fig.
1.1). If at time ¢t = O there are no parked cars, then one can
predict that the number of cars parked in P, and P, at time ¢
seconds will be ¢, and c,t respectively (it is assumed here that
the rates ¢, and c, are both constants). If ¢, >c, then the
number of cars parked in P, will, at all times, be greater than the
number of cars parked in P,. One would predict from this that
the first cul de sac will fill up before the second, and this

Cy‘
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Figure 1.1



2 MATHEMATICAL MODELLING

prediction might well be of use to the policeman controlling
traffic to the football match. Unfortunately this prediction may
not occur in reality because no account has been taken of the
fact that once a cul de sac fills up then the number of cars in that
cul de sac remains constant, i.e. the formula ct for the number of
parked cars does not remain valid. The mathematical model

. needs to be modified by taking into account the total number of

cars which can be parked in P, and P,. Let these numbers be n,
and n,. The first cul de sac will fill up at a time ¢ given by c,t
= ny,i.e. at time t = n,/c,. Similarly the second cul de sac will
fill up at time t = n,/c,. The required prediction can now be
made by determining which is the smaller of the two ratios, n, /c,
or n,/c,.

In the process of modelling it is often necessary to make
approximations. Usually the phenomena being modelled are
very complex and so, in order to achieve a reasonably simple
mathematical model, it is necessary to neglect certain aspects of
the phenomena and to model only those dominant aspects
which, intuitively, are of importance. For example, in the
parking problem already discussed, the number of cars which
can be parked in each cul de sac is very difficult to estimate.
These numbers depend upon the length and curvature of the cul
de sacs, the length and breadth of each individual car, and
finally the spaces left between parked cars. In order to achieve a
simple mathematical model suppose that the cul de sacs are
straight and of lengths /, and [, that the cars are each of length [
(this can be taken to be the average length of all cars produced)
and that the cars are parked bumper to bumper. Then the total
number of cars which can be parked in P, and in P, isn, = I/l
and n, = l,/I. This model is obviously very naive..One cul de sac
might contain a high class restaurant which attracts some of the
wealthier supporters for a pre-match lunch. Then the average
length of the cars in that cul de sac will probably be greater than
the average length of the cars in the other cul de sac and this
difference must be taken into account. A difficulty arises here
because one can never know beforehand whether, at any
particular match, the restaurant will be used by the supporters
and so influence the parking of cars. At best one can estimate the
probability that the restaurant will be used, and then the
mathematical model becomes a probabilistic model rather than
a deterministic model.

It is possible that the applied mathematician has difficulty in
finding a suitable mathematical structure with which to model
some particular observed phenomena. This might lead to a
search for new, as yet unformulated, mathematical structures.
Such a search belongs to the realm of pure mathematics. In this
way applied mathematics can often prompt and motivate the
discovery of ‘new’ pure mathematics. In fact the distinction
between ‘pure mathematicians’ and ‘applied mathematicians’
was, in the past, far less apparent than it is now. Such men as
Newton, Euler and Hamilton are all famous both as pure and as
applied mathematicians.

Occasionally the whole process of mathematical modelling
becomes inverted so that the phenomena being modelled are
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able to yield.information about the mathematical structure
being used. For example, the behaviour of an electrical circuit
can be modelled mathematically and it is found that the current
flowing in the circuit satisfies a certain differential equation. If
the circuit is very complex, then the differential equation is very
complex and therefore difficult to solve. However, it is a trivial
matter to measure the current flowing in the circuit and this
measured value is of course the required solution to the
differential equation. This method of ‘solving’ differential
equations is the basis of the modern electronic analogue
computer.

It may also happen that two phenomena from different
disciplines are modelled by the same mathematical structure.
The two phenomena are then analogues of each other. As an
example of this situation, consider the economist’s problem of
constructing the cheapest road system between given towns. The
given towns can be modelled as points on a plane and the roads
can be modelled as straight line segments lying on the plane, as-
shown in Fig. 1.2. If the cost/kilometre of roadway is the same at  Figure 1.2
all points, and if the cost of constructing junctions is neglected,
then the cheapest road system will be that of minimal total
length. The mathematical determination of such a road system
is very difficult. Now consider two parallel plates of glass a
distance d apart. Suppose a map of the region containing the
towns is etched onto one plate of glass and suppose that
perpendicular rods are placed between the plates of glass at the
location of the towns. If this is dipped into a soapy solution, then Network of minimal length
bubbles will form between the rods, the bubbles being
perpendicular to the plates of glass. Viewed from the plate of
etched glass these bubbles will form a network of line segments
connecting the towns. The effect of surface tension is to minimize
the surface area of the bubbles so that the bubbles will move

until their area, which is just the constant d times the total length /&/ \\l/
of the network, is a minimum. Hence in its final configuration

the network will be a network of minimal total length and will ~ \| \/
therefore correspond to the cheapest road system between the  Parallel plates  Soap film

towns (see Fig. 1.3). This is an example of a physical analogue Figure 1.3
of a problen: in economics.

1.2 What is mechanics?

Having given a general discussion of mathematical modelling, it
is now appropriate to explain just what is meant by mechanics
and to give a short outline of the scope of this text. Mechanics is
the study of mathematical models describing the relationship
between the phenomena which are observed to cause bodies to
move and the observed motion of those bodies. It is not to be
confused with kinematics which is the study of mathematical
models describing only the observed motion of the bodies. The
important difference between kinematics and mechanics is that
given some information about the initial motion of a body,
mechanics alone will predict the subsequent motion of that
body. Thus mechanics plays a far wider role in the physical.
sciences than does kinematics. It is often possible, with very little:
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loss of accuracy, to model bodies of finite size as particles. This is
certainly true, for example. when discussing the motion of a
planet around the sun. It is sufficient therefore to begin our
study of mechanics by modelling the motion of a particle rather
than the motion of a body of finite size. This simple model can
then be extended to the motion of bodies of finite size. The
motion of such bodies depends upon the physical properties of
the materials of which the bodies are composed. Here attention
will be restricted to bodies composed of rigid materials and, to a
far less extent, bodies composed of fluid materials. Of course
elastic, thixotropic, plastic, and other materials are also of great
interest but are beyond the scope of this book.

Two different types of mathematical models of motion will be
described here. The first is the classical model due to Newton,
the study of which is called Newtonian mechanics or classical
mechanics. The second is the special relativistic model due to
Einstein, the study of which is called relativistic mechanics.
Although Einstein’s model has superseded Newton's model, it is
found that in most instances classical mechanics leads to
predictions which agree well with observations. It is only when
speeds approach the speed of light that classical mechanics is
inadequate and has to be replaced by relativistic mechanics. For
this reason, most attention will be paid here to classical
mechanics.

Both models have in the past led, and still lead, to predlctlons
of new and amazing phenomena. For example, application of
classical mechanics to the orbit of Uranus enabled ‘Adams and
Leverrier to prediét, in 1846, the presence of a hitherto unknown
p'anet observed by Galle in 1847 and named Neptune.
Application of relativistic mechanics enabled Einstein to
predict, in 1905, the existence of nuclear energy almost forty
years before the manufacture of the first atom bomb. Very many
similar predictions could be quoted and the success of the two
models must rank as one of the greatest achievements of
mankind.

1.3 The classical models of time and space

Naturally occurring events have led man to the concept of time.
Observation of the rhythm of the seasons led to an estimate of
the length of the year as a number of days, the day being the
obvious interval between two sunrises. The advent of agriculture
necessitated a more accurate ‘calibration’ of the seasons, and
this was achieved, for example, by observing the motion of the
sun. The length of the year was specified by observing
midsummer’s day — the day on which the sun reaches its greatest
height in the sky. The phases of the moon led to the definition of
the month, and the rising and setting of the sun divided the day
into two intervals (day and night). Further domestication of
man led to the day being further subdivided, and this was done
by observing the position of the sun (or equivalently the length
of a shadow). Better astronomical observations made the
subdivisions of the day smaller, and the regularity of the
swinging of a pendulum, and similar devices, led to the
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construction of instruments. Using these instruments the
interval of time between the occurrence of two events can be
modelled by a real number, for example by counting the number
of swings performed by a pendulum between the occurrence of
the two events. Thus in the Newtonian (classical) model,
intervals of time are modelled by real numbers and these real
numbers are measured by instruments known as clocks. The
real number which models a given interval of time will depend
upon the unit of time used to calibrate the clocks. Here the unit
of time used will be the second. The time at which some event E
occurs is then simply the interval of time between the occurrence
of some prescribed event which is used to define the origin of
time and the occurrence of the event E. For example, the time of
day is the interval of time between midnight and the present.
Different clocks (calibrated in seconds), often given different
readings. This can be for one of two reasans. The first is that one
of the clocks is mechanically faulty, in which case it must be
replaced. The second is that the clocks are not synchronized, i.e.
they are using different prescribed events to define the origin of
time. The important assumption made in the classical model of
time is that once two identical clocks are synchronized then they
will remain synchronized even when the clocks are in relative
motion. Such a model is said to assume the existence of a
universal time. Few readers would question the existence of a
universal time. For example, if two friends are arranging to
meet, then they might well check initially that their wristwatches
show the same time but they will subsequently assume without
question that their wristwatches will remain synchronized,
enabling them to arrive at their meeting place simultaneously.
The path of a moving particle is a curve in space. In order to
model this curve, and the motion of the particle, it is necessary to
have a mathematical model of space itself. The classical
(Newtonian) model of space is simply a three-dimensional
euclidean geometry. This mathematical model of physical space
will be referred to as euclidean space. Notice that there is no
suggestion here that physical space is euclidean, and it is
important when referring to euclidean space to remember that
this is simply the geometry which is chosen as the mathematical
model of physical space. In fact physical space is not always
modelled by a euclidean geometry. The first mathematician to
formulate a non-euclidean geometry was Gauss. He did not
publish his work because it ran contrary to the contemporary
view which identified euclidean geometry with physical space.
It was only in 1830, after Bolyai and Lobachevsky had
independently published accounts of non-euclidean geometry,
that Gauss announced his results which had been obtained
thirty years earlier. Gauss had been motivated in his work on
non-euclidean geometry by his interest in the study of the shape
and dimensions of the earth’s surface. A student of his,
Riemann, developed Gauss’s ideas into a general theory, and
Einstein chose as the mathematical model of space and time for
his general theory of relativity a four-dimensional Riemannian
geometry. Thus in Einstein’s general theory of relativity, which
is a theory of gravitation, physical space is not modelled by a
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euclidean geometry. It is therefore fortunate that the classical
model of space is a three-dimensional euclidean geometry, a
mathematical structure with which readers will be familiar.

1.4 Euclidean geometry

The position of a point P in a three-dimensional euclidean
geometry can be specified by the coordinates (x, y, z) of the point
relative to some given set of mutually orthogonal axes Ox, Oy,
O:z. Such coordinates are called (rectangular) cartesian
coordinates, being named after Descartes. The fact that the axes
are mutually orthogonal does not specify their relative
orientation completely. Here the axes will always be chosen so
that their relative orientation is as illustrated in Fig. 1.4. Such
axes are called right handed.

Although cartesian coordinates are very often used to specify
the position of a point P they are not the only coordinate system
available, nor are they always the most convenient. It is not
necessary to give here a general discussion of alternative
coordinate systems.* However, when specifying the position of a
point P in a two-dimensional euclidean geometry, it is often
convenient to use polar coordinates. These coordinates are
defined by introducing a line / and an origin O lying on the line.
The polar coordinates of the point P are then (r, ) where r is the
length of OP and 6 is the angle between OP and the line / with
0 <6 <2n. By definition, r> 0. If.cartesian axes are chosen as in
Fig. 1.5 then the polar coordinates (r, 8) and the cartesian
coordinates (x, y) of the point P are related by the equations

x=rcosfl and y=rsinf (1.1)

Notice that each point is specified by one and only one set of
cartesian coordinates (x, y) and that the same is true of polar
coordinates (r, 8) except for the origin O which is specified by
(0, 0) for all values of 0.

The use of specific coordinate systems is to be discouraged
when giving a general discussion of euclidean geometry or of
mathematical models of motion based on a euclidean space.
For this reason, general results will be formulated in terms of
vectors, and specific coordinate systems will only be used when
dealing with particular problems. Then the type of coordinate
system will be chosen to make the solution of the problem as
simple as possible. Thus the point P is specified by the vector OP
which is called the position vector of P relative to O. The position
vector isdenoted by r. In order to specify a vector v defined at the
point P, it is necessary either to specify the magnitude and
direction of the vector or to specify the components of the vector
relative to a set of basis vectors defined at the point P. Associated
with any given coordinate system there is, at each point P, a
naturally defined set of basis vectors. Thus for two-dimensional
cartesian coordinates (x. y)thereis defined at each point Pasetof
basis vectorsi, jwhere i is a unit vector parallel to Ox and j Jjisaunit

*See Chapters 5 and 12 of the author’s book Introductory Vector Analysis
published by Edward Arnold, 1974.
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vector parallel to Oy (see Fig. 1.6). Notice that i, j form an
orthonormal basis and that

r=xi+yj ‘ (1.2)

For polar coordinates (r, 0) there is defined at each point P a
set of basis vectors £, & where  is a radial unit vector in the
direction of OP and 8 is a transverse unit vector perpendicular
to OP and orientated in the sense of increasing 0 (see Fig. 1.7).
Again £, & form an orthonormal basis and

r=rr (1.3)

The fact that these two sets of basis vectors are orthonormal
makes it very easy to write down the components of a given
vector v relative to either set of basis vectors. In fact each
component of v is found by multiplying the magnitude of v by
the cosine of the angle between the vector v and the relevant
basis vector. In particular, the vectors f and @ can be written in
terms of the basis vectors 1, j as

r = cos fi+sin 6j
and &= <sin 6i+cos 6]
Inverting these equations algebraically yields

(1.4)

i = cos 0f —sin 08

and j =sin 6f +cos 60
The basis vectors associated with a ‘three-dimensional
cartesian coordinate system (x, y, z)are denoted by 1, j, k. Such a
basis is called a cartesian basis and the components (v,, v,, v,) of

a given vector v relative to a cartesian basis are called the
cartesian components of the given vector. Thus

v=ui+vj+v.k » (1.6)

(1.5)

The equation (1.2) generalizes to
r=xi+yj+zk (1.7)

and so the cartesian coordinates of any point are just the
cartesian components of the position vector of that point.

1.5 Differentiation of vectors

The vectors met in mechanics usually describe physical
properties of some moving particle. As the particle moves, the
point P in euclidean space which models the location of the
particle in physical space will describe a curve. The position
vector of the point P lying on the curve will therefore be a
function of some parameter 4, that is

r=r(l) (1.8)

Any vector v defined at P may now vary in magnitude and
direction as the location of the point P varies. The vector v is
then called a vector function (more correctly a vector-valued
function) of 4 and is written as

v =v(4) (1.9)

y

]
Figure 1.6
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