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PREFACE

The flow of fluid in Earth’s atmosphere and ocean
affects life on global and local scales. The general circula-
tion of the atmosphere transports energy, mass, momen-
tum, and chemical tracers across the entire planet, and the
giant currents of the thermohaline circulation and wind-
driven circulation perform the same function in the ocean.
These established flows are reasonably steady on long time
scales. In contrast, short-lived instabilities may develop
and result in transient features such as waves, oscillations,
turbulence, and eddies. For example, in the atmosphere,
small-scale instabilities are able to grow into heavy storms
if the conditions are right.

It is therefore of interest to understand atmospheric and
oceanic fluid motions on all scales and their interactions
across different scales. Unfortunately, due to the complex
physical mechanisms at play and the wide range of scales
in space and time, research in geophysical fluid dynam-
ics remains a challenging and intriguing task. Despite the
great progress that has been made, we are still far from
achieving a comprehensive understanding.

As tools for making progress with the above chal-
lenge, laboratory experiments are well suited to studying
flows in the atmosphere and ocean. The crucial ingredi-
ents of rotation, stratification, and large-scale forcing can
all be included in laboratory settings. Such experiments
offer the possibility of investigating, under controlled
and reproducible conditions, many flow phenomena that
are observed in nature. Furthermore, immense computa-
tional resources are becoming available at low economic
cost, enabling laboratory experiments to be simulated
numerically in more detail than ever before. The inter-
play between numerical simulations and laboratory exper-
iments is of increasing importance within the scientific
community.

The purpose of this book is to provide a comprehensive
survey of some of the laboratory experiments and numer-
ical simulations that are being performed to improve our
understanding of atmospheric and oceanic fluid motion.

X1

On the experimental side, new designs of experiments
on the laboratory scale are discussed together with devel-
opments in instrumentation and data acquisition tech-
niques and the computer-based analysis of experimental
data. On the numerical side, we address recent devel-
opments in simulation techniques, from model formu-
lation to initialization and forcing. The presentation of
results from laboratory experiments and the correspond-
ing numerical models brings the two sides together for
mutual benefit.

The book contains five sections. Section I covers
baroclinic instability, which plays a prominent role in
atmosphere and ocean dynamics. The thermally driven,
rotating annulus is the corresponding laboratory setup,
having been used for experiments in geophysical fluid
dynamics since the 1940s by Dave Fultz, Raymond Hide,
and others. Section II covers balanced and unbalanced
flows. Sections III and IV cover laboratory experiments
and numerical studies devoted to specific atmospheric
and oceanic phenomena, respectively. Section V adresses
some new achievements in the computer-based analysis
of experimental data and some recent developments in
experimental methodology and numerical methods.

We hope this book will give the reader a clear picture of
the experiments that are being performed in today’s labo-
ratories to study atmospheric and oceanic flows together
with the corresponding numerical simulations. We further
hope that the lessons learnt from the comparisons between
laboratory and model will act as a source of inspiration for
the next generation of experiments and simulations.

Thomas von Larcher
Freie Universitdt Berlin
Germany

Paul D. Williams
University of Reading
United Kingdom
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Introduction: Simulations of Natural Flows in the Laboratory
and on a Computer

Paul F. Linden

Humans have always been associated with natural flows.
The first civilizations began near rivers, and humans devel-
oped an early pragmatic view of water flow and the effects
of wind. Experiments and calculations in fluid mechanics
can be traced back to Archimedes in his work “On floating
bodies” around 250 B.C., in which he calculates the posi-
tion of equilibrium of a solid body floating in a fluid. He
is, of course, attributed with the law of buoyancy known
as Archimedes principle. The ancient Greeks also eluci-
dated the principle of the syphon and the pump. This work
is essentially concerned with fluid statics, and the first
attempts to investigate the motion of fluids is attributed
to Sextus Julius Frontinus, the inspector of public foun-
tains in Rome, who made extensive measurements of flow
in aqueducts and, using conservation-of-volume princi-
ples, was able to detect when water was being diverted
fraudulently.

Possibly the first laboratory experiment designed to
examine a natural flow was by Marsigli [1681] who devised
a demonstration of the buoyancy-driven flow associ-
ated with horizontal density differences in an attempt
to explain the undercurrent in the Bosphorus that flows
toward the Black Sea [Gill, 1982]. This is a remarkable
experiment in that it provides an unequivocal demonstra-
tion that flow, now known as baroclinic flow with no net
transport, is possible even when the free surface is level, so
that there is no barotropic (depth-averaged) flow. These
buoyancy-driven flows occur almost ubiquitously in the
oceans and atmosphere and are an active area of current
research.

Another example of the early use of a laboratory
experiment is the explanation of the “dead water” phe-
nomenon observed by the Norwegian scientist Fridtjof

Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge, United Kingdom

Nansen [1897], who experienced an unexpected drag on
his boat during his expedition to reach the North Pole
in 1892. The responsible mechanism, the drag associated
with interfacial waves on the pycnocline, was studied by
Ekman [1904] in his Ph.D. thesis and a review of his work
and some modern extensions using synthetic schlieren can
be found elsewhere [Mercier et al., 2011].

This last reference nicely demonstrates one role of mod-
ern laboratory experiments. Although the basic mechanics
has been known since Ekman’s study, by careful observa-
tion of the flow and making quantitative measurements
of the wave fields made possible with new image process-
ing techniques, it has been shown that the dead water
phenomenon is nonlinear. The coupling of the large-
amplitude interfacial and internal waves with significant
accelerations of the boat are an intrinsic feature of the
energy transmission from the boat to the waves. Although
the essential features have been known for over a century,
these recent data provide new insights into the physics of
the flows and show that the drag on the boat depends
on the forms of the waves generated. Experiments like
this provide insight and inspiration about the underlying
dynamical processes, ideally motivating theory which can
subsequently refocus the experiments.

Numerical methods were first devised to solve poten-
tial flow problems in the 1930s, and as far as I am aware
the first numerical solution of the Navier-Stokes equa-
tions, i.e., the first computational fluid dynamics (CFD)
calculation, applied to two-dimensional swirling flow, was
published by Fromm [1963]. Since then there has been
enormous growth in computational power, and this has
led to developments in both CFD and laboratory experi-
mentation. The reasons for the improvement in CFD are
clear. In order to calculate a flow accurately, it is neces-
sary that the discrete forms of the governing equations
are a faithful representation of the continuous partial

Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations,
First Edition. Edited by Thomas von Larcher and Paul D. Williams.
© 2015 American Geophysical Union. Published 2015 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Figure 0.1. A sketch of Marsigli’s [1681] experiment illustrating
the counterflow driven by the density difference between the
two fluids in either side of the barrier with flow along the surface
toward the denser fluid and a countercurrent along the bottom
in the opposite direction.

differential equations. For geophysical flows, which are
typically turbulent, this means that in order to avoid
approximations it is necessary to compute all the scales of
motion, which range from the energy input scales down
to the smallest scales, where viscous dissipation occurs.
This represents a huge range of scales. Energy is input on
global scales (10° m) and dissipated at the Kolmogorov
scale (v3/€)!1/4 ~ 1073 m. This nine decade range of length
(and associated time) scales remains well beyond the capa-
bilities of current (and foreseeable) computing power and
represents a huge challenge to the computation of geo-
physical flows.

Geophysical flows are stably stratified (buoyant fluid
naturally lies on top of denser fluid) and occur on a
rotating planet. The stratification, characterized by the
buoyancy frequency N, is of the order of 1072 s~! and is
roughly the same in the atmosphere and the oceans. The
rotation of Earth is characterized by the Coriolis param-
eter f, which, with values of order 10~4s~!, introduces
longer time scales than those associated with the strati-
fication. Thus, the atmosphere and the oceans, viewed on
global scales, are strongly stratified, weakly rotating fluids.

Stratification provides a restoring force to vertical
motions through the buoyancy force associated with the
density difference between the displaced fluid particle and
the background stratification. Rotation provides a restor-
ing force due to horizontal motions through the Coriolis
force (or by conservation of angular momentum viewed
in an inertial frame). For motion with horizontal scale L
and vertical scale H, the balance between these forces is
given by the Burger number B:

NH
B= A (0.1)

Stratification dominates when B >> 1, i.e., when hor-
izontal scales are relatively small compared with the
Rossby deformation radius Rp = NH/f, while rotation
dominates when horizontal scales are large compared
with Rp and B << 1. On global scales the oceans and
the atmosphere are thin layers of fluids with vertical
to horizontal aspect ratios H/L of order 1073, Conse-
quently, for motion on global scales in the atmosphere
or basin scales in the oceans, B~ 107! and rotational
effects dominate. These flows can be modeled as essen-
tially unstratified flows, with Coriolis forces providing the
main constraints. Motion on smaller scales will generally
lead to increasing values of B and increasing effects of
stratification. Mesoscale motions, in which buoyancy and
Coriolis forces balance, are typified by values of B~ 1, in
which case the horizontal scale of the motion is compa-
rable to the Rossby deformation radius Rp, which is on
the order of 1000 km in the atmosphere and 100 km in
the oceans.

In order to examine the effects of rotation, experiments
are conducted on rotating platforms. These are generally
high-precision turntables capable of carrying significant
weight, and they present a significant engineering chal-
lenge in their construction. The requirements and per-
formance of these turntables are discussed in Chapter 7,
which illustrates these by considering flows of thin fluid
layers in rotating containers of different diameters from
0.1 to 10 m. As the size of the turntable is increased,
the engineering requirements become more demanding
and the cost increases. Furthermore, larger flow domains
require more fluid, and if stratified, this requires a more
stratifying agent, such as (the commonly used) sodium
chloride. For these reasons most laboratory turntables
range up to about 1 m in diameter, and there needs to be a
compelling reason to work on large-diameter turntables.

One reason for increasing the experimental scale from
1 to 10 m is to reduce frictional effects. Reynolds numbers
Re= UL/v, where U and L are typical velocity and length
scales and v is the kinematic viscosity, are increased by a
factor of 10 (equivalently Ekman numbers E = v/fL? are
reduced by a factor of 100), and so the effects of bound-
ary friction are reduced and damping times are increased
at large scale. This can be an dominant factor when study-
ing flows where separation or turbulence is dominant or,
as in the case discussed in Chapter 7, the motion of vor-
tices driven by vortex interactions or interactions with
topography.

On the other hand, there is little to be gained in terms
of the overall Rossby number or Burger number, both
of which involve the product fL of rotation and length
scale. This product is the speed of the rim of the turntable,



