SOFTWARE
ENGINEERING

Volume 1: The Development Process

&

THIRD EDITION

Original papers by
Antonia Bertolino ® Mark J. Christensen ¢ Jane Cleland-Huang Hassan Gomaa
Claire Lohr Eda Marchetti ®* Thomas M. Pigoski * Anne Pons

Roger S. Pressman * Robert J. Remington * Pete Sawyer ¢ Geri Schneider

Jed Scully * Guy Tremblay * Robert L. Vienneau ¢ Jason P. Winters

EDITED BY
Richard H. Thayer and Mark J. Christensen

FOREWORD BY

Carl K. Chang

Software Engineering

Volume 1: The Development Process
THIRD EDITION

Edited by
Richard H. Thayer and Mark J. Christensen

S

COMPUTER
@ lEEE SOCIETY A JOHN WILEY & SONS, INC., PUBLICATION

llilit@

COMPUTER
SOCIETY

¢ IEEE

Press Operating Committee

Chair Editor-in-Chief
Roger U. Fujii, Donald E Shafer
Vice President Chief Technology Officer
Northrop Grumman Mission Systems Athens Group, Inc.

Board Members

John Horch, Independent Consultant
Mark J. Christensen, Independent Consultant
Ted Lewis, Professor Computer Science, Naval Postgraduate School
Hal Berghel, Professor and Director School of Computer Science, University of Nevada
Phillip Laplante, Associate Professor. Software Engineering, Penn State University
Richard Thayer, Professor Emeritus, California State University, Sacramento
Linda Shafer, Professor Emeritus University of Texas at Austin
James Conrad, Associate Professor UNC—Charlotte
Deborah Plummer, Manager-Authored books.

IEEE Computer Society Executive Staff
David Hennage, Executive Director
Angela Burgess, Publisher

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative computer sci-
ence and engineering texts. These books are available from most retail outlets. Visit the CS Store at http://computer.org/cspress for
a list of products.

. IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to produce a number of excit-
ing new titles in areas of computer science and engineering with a special focus on software engineering. [EEE Computer Soci-
ety members continue to receive a 15% discount on these titles when purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail dplummer@computer.org or write to Books, IEEE
Computer Society, 100662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1-714-821-8380.

Additional information regarding the Computer Society authored book program can also be accessed from our web site at
http://computer.org/cspress

Copyright © 2005 by IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or
warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or
fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be
liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S.
at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN-13 978-0-471-68417-6
ISBN-10 0-471-68417-1

Printed in the United States of America.

10987654321

Software Engineering
Volume 1: The Development Process
THIRD EDITION

—

-—._(!

S A .
i, & B L F <
¢ . P 3

P I Y \d
y X w .

—_—

——— — — — o— .
p—

|

o

W ilbsiwidasirajLgiai

i ananme .
.“,.)

g~
e = —
=1 ..r‘ [”' .
TR
il Iy

Foreword

This is the first of two volumes published by the IEEE Computer Society to assist the reader in preparing to take the examina-
tion required to become a Certified Software Development Professional (CSDP).

The Computer Society has taken a two-fold approach to help developers quickly and economically produce software that
meets users’ needs through certification and standards. These approaches are closely related, because disciplined development
of high-quality software requires a good development process, standards are a key part of the process, and certification recog-
nizes the importance of a standards-supported process.

IEEE/EIA-STD-12207 provides a framework, both business and technical, within which all the processes, activities, and
tasks of software development take place. Standard 12207 partitions all the processes of software development into two class-
es: primary and supporting. Accordingly, the two volumes of this study guide discuss these two classes separately. Volume 1
focuses on the primary development, processes, whereas Volume 2 focuses on the supporting processes.

The primary processes discussed in Volume 1 are immediately recognizable as those commonly associated with specifying,
designing, implementing, testing, and maintaining software. In addition to the specific discussions of those topics, Volume 1
includes papers that address the general issues of software engineering, including the societal context in which software devel-
opers work. Volume 1 includes discussions of:

The key concepts and activities of software and systems engineering

The societal and legal contexts within which software development occurs

The key IEEE Software Engineering Standards

The importance of software requirements and methods for developing them

Key concepts and methods of software design

Guidelines on the selection and use of tools and methods

The major issues and activities of software construction

The types of software testing that occur during development and some methods for performing software tests
Preparing for and executing a program of software maintenance

Many of the papers in this volume examine the knowledge areas identified in the Software Engineering Body of Knowledge
(SWEBOK) as being critical to the successful development of software products. In many cases, explicit cross referencing to
the SWEBOK is provided.

Volume 2 focuses on the supporting processes of configuration management, validation and verification, quality assurance,
reviews, audits, and documentation, together with the processes of the organizations involved in software development, includ-
ing management, infrastructure, the education and training of staff, and the implementation of a program of systematic im-
provement of all of the software life-cycle processes.

Volumes 1 and 2 of this Third Edition revise and update the 2002 tutorial of the same title. They consist of both original pa-
pers and authoritative existing papers from IEEE archival journals and other well-regarded sources. In keeping with the impor-
tance of good standards in the development processes, excerpts from appropriate Computer Society software engineering stan-
dards have been included in both volumes.

The two volumes of the study guide have been written to aid the reader both in achieving an understanding of standards-
based software development (particularly using IEEE-STD-12207) and in gaining the knowledge needed to pass the CSDP ex-
amination. Thus, any software professional, whether or not he or she wishes to obtain certification by the prestigious IEEE
Computer Society, will benefit from the knowledge of proven standards-based development practices contained in these vol-
umes.

As Past President of the Computer Society I encourage all software engineers to use the study guide and to make processes,
standards, and certification a central part of their careers. I also strongly encourage them to prepare for and take the CSDP ex-
amination. Such study will benefit them directly in their career by exposing them to processes and concepts that they may not
have encountered in their earlier education and training, as well as allowing them to raise their own professional stature by
passing the examination. It will also raise the visibility and professional level of the entire profession, which will benefit all se-
rious practitioners of software development who approach their work tasks with a professional attitude.

CARL CHANG
President 2004, IEEE Computer Society

Preface

The continuing development of the disciplines that make up software development has reached a point of maturity that has al-
lowed the community to reach fairly definitive judgments of what constitutes good engineering practice. The professional so-
cieties dedicated to the promulgation of good software engineering practices, as well as research and continuing education in
the field, have undertaken multiple efforts to bring these practices forward to the diverse membership of the computing frater-
nity. This has been done through a variety of magazines, journals, textbooks, and benchmark publications that identify key ar-
eas of knowledge, along with standards that describe and prescribe the processes and activities used by software engineers. Fi-
nally, to recognize individuals who have striven to learn and apply these tools to improve the quality of their work and the
products they deliver, the IEEE Computer Society has created the Computer Software Development Professional (CSDP) cer-
tification program. The keystone of the CSDP certificate is the successful completion of the CSDP examination, which is of-
fered by the Computer Society (www.computer.org).

This two-volume work is intended to support the reader in their efforts to improve themselves and their products as well as,
in particular, to help them prepare for the CSDP examination. The editors, together with the contributing authors and review-
ers, have dedicated their efforts toward those two objectives.

There are two guiding themes that will be repeated throughout the two volumes. The first theme is the use of IEEE/EIA
Standard 12207 as a reference. IEEE/EIA 12207 provides a conceptual model for the major business and technical processes
that have, over time, been recognized as key to successful software development. The other guiding theme is the use of the
Software Engineering Body of Knowledge (SWEBOK) as a reference for key areas of technical knowledge. The community of
software professionals has, through the SWEBOK, reached consensus on the key areas with which a software development
professional should be familiar. The goal of the papers in these two volumes is to expand on those key processes and knowl-
edge areas to provide the reader with useful, practical information in their working career as well as in their preparation for the
CSDP examination.

The two volumes, following the breakdown of 12207, partition the processes and knowledge areas into those normally
thought of as constituting software development and those that support (or create the environment for) the development
processes. Thus, the primary processes discussed in the first volume include the general technical concepts of systems and
software engineering, along with requirements specification, architectural design, detailed design, code and unit test, and inte-
gration. The supporting but equally important processes of configuration management; validation and verification; quality as-
surance; reviews, audits, and documentation; management; infrastructure; the education and training of technical staff; and the
implementation of a program of systemic improvement of all of the software lifecycle processes are discussed in the second
volume.

The editors hope that these two volumes will be of use to the individual software developer who seeks to improve his or her
levels of proficiency as well as professional standing by taking the CSDP examination. The editors also hope that this work
furthers and encourages the collective improvement of the profession.

RicHARD THAYER
MERLIN DORFMAN
MARK CHRISTENSEN

xi

Contributors

Dr. A. Frank Ackerman, Ferrum College, a.f.ackerman@ieee.org

Prof. Dr. Friedrich L. Bauer, Institut fiir Informatik der Technischen Universitit Miinchen (retired), Munich, Germany
Dr. Doug Bell, Sheffield Hallam University, d.h.bell@shu.ac.uk

Prof. Keith H. Bennett, University of Durham, keith.bennett@durham.ac.uk

Dr. Antonio Bertolino, Istituto di Elaborazione della Informazione, antonio.bertolino@jsti.cnr.it
Dr. Barry W. Boehm, University of Southern California, boehm@sunset.usc.edu

Prof. Pearl Brereton, University of Keele, o.p.brereton@cs.keele.ac.uk

Prof. David Budgen, University of Keele, d.budgen@cs.keele.ac.uk

Dr. Carl K. Chang, lowa State University, c.chang@computer.org

Ms. Mary Beth Chrissis, Software Engineering Institute (SEI), mb@sei.cmu.edu

Dr. Mark J. Christensen. Independent Consultant, markchri@concentric.net

Dr. Jane Cleland- Huang, DePaul University, jhuang@cs.depaul.edu

Dr. Bill Curtis, Borland Software Corporation, curtis@acm.org

Mr. Jon K. Digerness, North Coast Graphics, j.digerness@juno.com

Dr. Merlin Dorfman, Cisco Systems, dorfman@computer.org

Dr. Richard E. Fairley, Oregon Health and Science University, dfairley@cse.ogi.edu

Dr. Stuart R. Faulk, University of Oregon, faulk@cs.oregon.edu

Prof. Alfonso Fuggetta, Poliecnico di Milano, alfonso.fuggetta@cefriel.it

Mr. Roger U. Fujii, Northrop Grumman Mission Systems, roger.fujii@ngc.com

Dr. Hassan Gomaa, George Mason University, hgomaa@gmu.edu

Prof. Patrick (Pat) A.V. Hall, The Open University, p.a.v.hall@open.ac.uk

Dr. Lingzi Jin, Cherwell Scientific Ltd., lingzi@cherwell.com

Ms. Beth Layman, Borland Software Corporation, beth.layman@borland.com

Ms. Claire L. Lohr, Lohr Systems, lohrsys@erols.com

Ms. Eda Marchetti, Istituto di Elaborazione della Informazione, eda.marchetti@isti.cnr.it
Mr. John J. Marciniak, Visiting Scientist (SEI), jmarcin222@aol.com

Dr. Ian Morrey, Sheffield Hallam University, i.c.morrey@shu.ac.uk

Ms. Linda M. Northrop, Software Engineering Institute (SEI), Imn@sei.cmu.edu

Dr. Ronald E. Nusenoff, Cisco Systems, nusenoff(@cisco.com

Dr. James D. Palmer, Consultant, jdpalmer@ix.netcom.com

Dr. Mark Paulk, Carnegie Mellon University, mcp@cs.cmu.edu

Dr. Anne Pons, Univérsity du Québec a Montréal, pons.anne@uqam.ca

Dr. Roger S. Pressman, R.S. Pressman & Associates, Inc., pressman@rspa.com

Mr. John Pugh, Carleton University, johnpugh@sympatico, ca -

Dr. Robert J. Remington, Lockheed Martin Space Systems Company, bob.remington@Imco.com
Mr. Paul Rook (deceased), City University, London, United Kingdom

Dr. Pete Sawyer, Lancaster University, sawyer@comp.lancs.ac.uk

Ms. Geri Schneider, Wyyzzk, Inc., geri@txt.com

Prof. Jed Scully, McGeorge School of Law, jscully@uop.edu

Mrs. Laura Sfardini, Politecnico di Milano, laura.sfardini@cefriel.it

Prof. lan Sommerville, Lancaster University, is@comp.lancs.ac.uk

Dr. Richard D. Stutzke, Science Applications International Corporation (SAIC), Richard.d.stutzke@saic.com
Prof. A.G. Sutcliffe, University of Manchester, a.g.sutcliffe@co.umist.ac.uk

Dr. Richard H. Thayer, CSDP, Software Management Training, r.thayer@computer.org
Mr. Steve Tockey, Construx Software, steve.tockey(@construx.com

Dr. Guy Tremblay, Univérsity du Québec a Montréal, tremblay.guy@uqam.ca

Mr. Leonard L. Tripp, Consultant, L.tripp@computer.org

Mr. Robert L. Vienneau, ITT Industries, rvien@dreamscape.com

Ms. Dolores R. Wallace, National Institute of Science and Technology (retired), drwallace 1 @comcast.net
Mr. Charles V. Weber, Borland Software Corporation, charlie.weber@boreland.com

Mr. Jason P. Winters, Wyyzzk, Inc., jason@txt.com.

xiii

Reviewers

Dr. Danial M. Berry, University of Waterloo

Mr. Ken Chizinsky, Cisco Systems, Inc.

Dr. James M. Conrad, University of North Carolina at Charlotte
Mr. Paul R Croll, Computer Science Corporation

Dr. Richard E. Fairley, Oregon Health & Science University
Prof. Alfonso Fuggetta, Politecnico de Milano

Mr. Roger U. Fujii, Northrop Grumman Mission Systems

Mr. Mark A. Grant, Grant & Associates

Dr. Jane Cleland- Huang, DePaul University

Mr. Barry S. Johnson, Shooting Star Solutions, LLC

Dr. Xiaoping Jia, DePaul University

Dr. Steve King, University of York

Ms Susan K. Land, CSDP, Northrop Grumman Information Technology
Ms. Claire L. Lohr, Lohr Systems

Mr. John Marciniak, Visiting Scientest - SEI

Mr. James W. Moore, CSDP, The MITRE Corporation

Prof. Mauro Pezzé, Politecnico di Milano, Bicocca

Dr. Jesse Poore, University of Tennessee

Dr. Jim Isaak, Southern New Hamshire University

Dr. Stephen Seidman, New Jersey Institute of Technology

Mr. Matthew Sheranko, Knowledge Code, Inc.

Dr. Richard D. Stutzke, Science Applications International Corporation
Mr. Steve Tockey, Construx Software

Dr. Charles M. Waespy, Institute of Defense Analysis

XV

Contents

Foreword
Carl K. Chang

Preface
Richard H. Thayer and Mark Christensen

Contributors
Reviewers

Chapter 1. Software Engineering Development Process
Software Engineering
Roger S. Pressman

The Origin of Software Engineering
Friedrich L. Bauer

Software System Engineering: A Tutorial
Richard H. Thayer

Recommended Skills and Knowledge for Software Engineers
Steve Tockey

Chapter 2. Software Business Practices

Software and Society
Mark J. Christensen

Software’s Chronic Crisis
W. Wayt Gibbs

Professional Software Engineering: Fact or Fiction "
Steve McConnell and Leonard Tripp ™~

How the New Software Engineering Code of Ethics Affects You
Don Gotterbarn

An Integrated Collection of Software Engineering Standards
James W. Moore

Software and the Law
Jed Scully &

Are Developers Morally Challenged?
Karl Dakin
Chapter 3. Software Requirements Engineering

Software Requirements
Jane Cleland-Huang

Xi

Xiil

XV

29

31

47

55
57

63

73

79

87

95

107

109
113

Software Requirements
Pete Sawyer

Traceability
James D. Palmer

A Taxonomy for Scenario Use in Requirement Elicitation and Analysis of Software Systems

Brian D. Chance and Bonnie E. Melhart

Prototyping: Alternative Systems Development Methodology
J. M. Carey

IEEE Standard 830-1998—Recommended Practice for Software Requirement Specification

Chapter 4. Software Design

Software Design: An Overview
Guy Tremblay and Anne Pons

Software Design: An Introduction
David Budgen

Modern Software Design Methods for Concurrent and Real-Time Systems
Hassan Gomaa ;

Understanding and Using Patterns in Software Development
Dirk Riehle and Heinz Ziillighoven

Architectural Styles, Design Patterns, and Objects
Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan

Safety-Critical Software: Status Report
Patrick R. H. Place and Kyo C. Kang

Software Usability
Robert J. Remington

IEEE Standard 1016-1998—Recommended Practice for Software Design Descriptions

Chapter 5. Software Tools and Methodologies

Object-Oriented Development
Linda M. Northrop

Object-Oriented Systems Development: Survey of Structured Methods
A. G. Sutcliffe

An Introduction to Use Cases
Geri Schneider and Jason P. Winters

A Review of Formal Methods
Robert L. Vienneau

Re-Engineering and Reuse of Software
Patrick A. S. Hall and Lingzi Jin

vi

125
141
151
159

167

191
195

209
221 ‘
235
249
259
271

279

289
292

301
311
323

335

Chapter 6. Construction

Software and Construction: Implementing and Tesing the Design
Mark Christensen

Chapter 7. Testing and Integration

A Brief Essay on Software Testing
Antonia Bertolino and Eda Marchetti

Software Testing
Claire Lohr

A Review of Software Testing
P. David Coward

IEEE Standard 829-1998—Software Test Documentation

Chapter 8. Software Maintenance

Software Maintenance
Thomas M. Pigoski

Software Maintenance: A Tutorial
Keith H. Bennett

IEEE Standard 1219-1998—Software Maintenance

Appendix A. Centralized IEEE Software Engineering Standards References
Appendix B. Centralized IEEE Software Engineering Standards Glossary
Appendix C. CSDP Examination Specifications

Appendix D. CSDP Recommended References (Books)

Appendix E. CSDP Preparation Guide (Papers)

Appendix F. Certified Software Development Professional (CSDP) Examination Preparation Glossary

Richard H. Thayer, Steve McConnell, and Steve Seidman

About the Editors

vii

353
355

389
393

413

421

431

445
447

455

471
487
491
497
501
505

511

523

Chapter 1

Software Engineering Development Process

1. INTRODUCTION

This chapter discusses what software engineering is, how it arose, the nature of its relationship to the broader issues of systems
engineering, and what skills and knowledge practitioners should possess in order that they may perform their tasks in a pro-
fessional manner. The goal of this chapter is not to replicate or contradict the specifics of any particular topic covered in later
chapters of this volume or those of the companion volume. Rather, this chapter, together with Chapter 2, is intended to frame
the broader issues within which the specific processes, activities, and tasks of the software development professional are per-
formed.

2. RELATIONSHIP TO THE SWEBOK AND SOFTWARE ENGINEERING STANDARDS

The Software Engineering Body of Knowledge (SWEBOK) project was undertaken by the IEEE Computer Society in an ef-
fort to identify, document, and describe the key areas of knowledge that were, by a consensus vote of members of the profes-
sion, necessary for the proper development of software products. In 2004 the SWEBOK, already 4 years old, was revised to
encompass new and changed areas of knowledge, and to reflect the experiences of the profession in applying the earlier ver-
sions. Of necessity, such an important document is a formal one and is ill-suited to direct application to pedagogic or training
efforts. Similarly, the IEEE has been developing a series of Standards, intended to identify and foster the rigorous develop-
ment of software products. These two efforts of the community do not stand in contradiction to one another. Rather, they are
mutually supportive, with the SWEBOK identifying areas of knowledge that software practitioners should be familiar with,
while the Standards provided a concrete identification of what processes, activities, and tasks are to be performed, together
with document formats. Thus the SWEBOK identifies the knowledge, while the Standards identify processes, activities, and
tasks along with specific guidance, templates, checklists, and formats needed to accomplish those objectives. Neither is tuto-
rial or discursive in nature.

The purpose of this Chapter of this volume is to provide the reader with a broader context in which those two documents,
and later parts of this and the companion volume, may be contemplated and acted upon.

3. THE PAPERS

This chapter contains four papers that discuss the general processes of software engineering, forming the general background
and context for the balance of the two volumes: "

Software Engineering by Roger S. Pressman, which provides an overview of the tasks that software engineers must per-
form. Dr. Pressman has graciously revised and updated his important earlier paper on this subject specifically for this volume.
Reading this paper provides an excellent background on the goals, issues, and challenges faced by practitioners attempting to
properly engineer software products. The reader will find this overview paper instructive when referencing virtually any of the
IEEE Software Standards and likewise serves as a useful introduction to the entire SWEBOK.

The Origin of Software Engineering by Friedrich L. Bauer, which describes the historical background behind the term soft-
ware engineering in a highly personal and direct manner. As the reader digests this paper it will be instructive to reflect on
both how much and how little has changed since the 19607, when the events chronicled in this note occurred. Many of the is-
sues discussed in the paper remain with us today. While not tied directly to any of the specific IEEE Standard or chapter of the
SWEBOK, this paper remains instructive as it reminds us of the fundamental nature of the problems that must be overcome as
the software engineering profession matures.

Software Systems Engineering by Richard H. Thayer, which frames the role of software engineering within the broader
framework of systems engineering; the design, construction, and test of systems with human, hardware (computational and
otherwise), and software components. As the reader works through the subsequent chapters of both volumes of this tutorial
they will find it useful to constantly remember that software development usually occurs within the broader context of system

development. The reader will find this paper instructive when referencing IEEE Standard 1220, Systems Engineering Process
and IEEE Standard 1362, Concept of Operations.

The most relevant areas of SWEBOK are Chapter 8, Software Engineering Management, Chapter 9, Software Engineering
Process, and Chapter 12, Related Disciplines.

Recommended Skills and Knowledge for Software Engineers by Mr. Steve Tockey, which presents a summary discussion of
both the capabilities (skills to perform tasks) and knowledge (the background needed to acquire those skills) needed by mod-
ern software engineers. Reading this paper in conjunction with the SWEBOK will provide the reader with insight into the dual
nature of software engineering knowledge: On the one hand, many of the principles that we must follow and apply are long
lasting. On the other hand, the specifics of how they are implemented are highly subject to change. As the reader works
through this paper they may find it useful to note which of the various skill and knowledge areas they have mastered and the
relative importance of those capabilities in their day-to-day work. It is also a useful exercise to compare the views of the SWE-
BOK with those of Mr. Tockey.

Software Engineering

Roger S. Pressman, Ph.D.

As software engineering moves into its fourth decade, it suffers from many of the strengths and some of the frailties that are
experienced by humans of the same age. The innocence and enthusiasm of its early years have been replaced by more reason-
able expectations (and even a healthy cynicism) fostered by years of experience. Software engineering approaches its midlife
with many accomplishments already achieved, but with significant work yet to do.

The intent of this paper is to provide a survey of the current state of software engineering and to suggest the likely course of
the aging process. Key software engineering activities are identified, issues are presented, and future directions are considered.
There will be no attempt to present an in-depth discussion of specific software engineering topics. That is the job of other pa-
pers presented in this book.

1. SOFTWARE ENGINEERING—A LAYERED TECHNOLOGY

Although hundreds of authors have developed personal definitions of software engineering, a definition proposed by Fritz
Bauer [2] at the seminal conference on the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in order to obtain economi-
cally software that is reliable and works efficiently on real machines.

Almost every reader will be tempted to add to this definition. It says little about the technical aspects of software quality; it
does not directly address the need for customer satisfaction or timely product delivery; it omits mention of the importance of
measurement and metrics; it does not state the importance of a mature process. And yet, Bauer’s definition provides us with a
baseline. What are the “sound engineering principles” that can be applied to computer software development? How do we
“economically” build software so that it is “reliable?” What is required to create computer programs that work “efficiently” on
not one but many different “real machines?” These are the questions that continue to challenge software engineers.

Software engineering is a layered technology. Any engineering approach (including software engineering) must rest on an
organizational commitment to quality (Figure 1). Total Quality Management, Six Sigma, and similar philosophies foster a
continuous process-improvement culture, and it is this culture that ultimately leads to the development of increasingly more
mature approaches to software engineering. The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. Software engineering process is the glue that holds the tech-
nology layers together and enables rational and timely development of computer software. Process defines a framework for a
set of key process areas [3] that must be established for effective delivery of software engineering technology. The key process
areas form the basis for management control of software projects, and establish the context in which technical methods are ap-
plied, work products (models, documents, data, reports, forms, etc.) are produced, milestones are established, quality is en-
sured, and change is properly managed.

Software engineering methods provide the technical “how to’s” for building software. Methods encompass a broad array of
tasks that include: requirements engineering and analysis, design, program construction, testing, and software maintenance.
Software engineering methods rely on a set of basic principles that govern each area of the technology and include modeling
activities and other descriptive techniques.

Software engineering fools provide automated or semiautomated support for the process and the methods. When tools are
integrated so that information created by one tool can be used by another, a system for the support of software development,
called computer aided software engineering (CASE), is established. CASE combines software, hardware, and a software engi-
neering database (a repository containing important information about analysis, design, program construction, and testing) to
create a software engineering environment that is analogous to CAD/CAE (computer aided design/engineering) for hardware.

Portions of this paper (including the figures) were adapted from Software Engineering: A Practitioner s Approach,6th ed. [1] and are used with the permission
of McGraw-Hill.

Figure 1 Software engineering layers.

2. A PROCESS FRAMEWORK

A process framework establishes the foundation for a complete software process by identifying a small number of framework
activities that are applicable to all software projects, regardless of their size or complexity. In addition, the process framework
encompasses a set of umbrella activities that are applicable across the entire software process.

Each framework activity (Figure 2) is populated by a set of software engineering actions—a collection of related tasks that
produces a major software engineering work product (e.g., design is a software engineering action). Each action is populated
with individual work tasks that accomplish some part of the work implied by the action.

The following generic process framework (used as a basis for the description of process models) is applicable to the vast
majority of software projects:

Communication. This framework activity involves heavy communication and collaboration with the customer (and oth-
er stakeholders') and encompasses requirements gathering and other related activities.

Planning. This activity establishes a plan for the software engineering work that follows. It describes the technical tasks
to be conducted, the risks that are likely, the resources that will be required, the work products to be produced, and a
work schedule. It also addresses a team’s approach to quality assurance and configuration management.

Modeling. This activity encompasses the creation of models that enable the developer and the customer to better under-
stand software requirements and the design that will achieve those requirements.

Construction. This activity combines code generation (either manual or automated) and the testing that is required to
uncover errors in the design or code.

Deployment. The software (as a complete entity or as a partially completed increment) is delivered to the customer who
evaluates the product and provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small, simple programs; the creation of
large Web applications; and for the engineering of large, complex computer-based systems. The details of the software process
will be quite different in each case, but the framework activities remain the same.

The common process framework is complemented by a number of umbrella activities. Typical activities in this category in-
clude the following:

Software project tracking and control allows the software team to assess progress against the project plan and take
necessary action to maintain schedule.

Risk management assesses risks that may affect the outcome of the project or the quality of the product.
Software quality assurance defines and conducts the activities required to ensure software quality.

Formal technical reviews assess software engineering work products in an effort to uncover and remove errors before
they are propagated to the next activity.

Measurement defines and collects process, project, and product measures that assist the team in delivering software
that meets customer’s needs and can be used in conjunction with all other framework and umbrella activities.

'A stakeholder is anyone who has a stake in the successful outcome of the project—business managers, end users, software engineers, support people, and so
on. Rob Thomsett jokes that “a stakeholder is a person holding a large and sharp stake. . . . If you don’t look after your stakeholders, you know where the stake
will end up.”

Process framework

Umbrella activities

framework activity # 1
software engineering action #1.1

work tasks
Task sets SOk P
quality assurance points
project milestones
[] T T S E———

software engineering action #1.k

work tasks

work products
quality assurance points
project milestones

Task sets

framework activity # n
software engineering action #n.1

work tasks

work products

quality assurance points
project milestones

Task sets

software engineering action #n.m

work tasks
work products
quality assurance points

roject milestones
L0 .

Task sets

Figure 2 A software process framework.

® Software configuration management manages the effects of change throughout the software process.

® Reusability management defines criteria for work product reuse (including software components) and establishes
mechanisms to achieve reusable components.

® Work product preparation and production encompasses the activities required to create all work products such as
models, documents, logs, forms, and lists.

All process models can be characterized within the process framework shown in Figure 2. Intelligent application of any
software process model must recognize that adaptation (to the problem, to the project, to the people doing the work, and to the
organizational culture) is essential for success. But process models do differ in fundamental ways:

® The overall flow of activities and tasks and the interdependencies among activities and tasks
® The degree to which work tasks are defined within each framework activity

