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Abstract

This paper deals with elliptic equations in the plane with degeneracies. The
equations are generated by a complex vector field that is elliptic everywhere except
along a simple closed curve. Kernels for these equations are constructed. Properties
of solutions, in a neighborhood of the degeneracy curve, are obtained through inte-
gral and series representations. An application to a second order elliptic equation
with a punctual singularity is given.
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Introduction

This paper deals with the properties of solutions of first and second order
equations in the plane. These equations are generated by a complex vector field
X that is elliptic everywhere except along a simple closed curve ¥ C R?. The
vector field X is tangent to ¥ and X A X vanishes to first order along ¥ (and
so X does not satisfy Hormander’s bracket condition). Such vector fields have
canonical representatives (see [8]). More precisely, there is a change of coordinates
in a tubular neighborhood of ¥ such that X is conjugate to a unique vector field L
of the form

o . 0
(0.1) L= /\5 —irges
defined in a neighborhood of the circle 7 = 0 in R x S', where A € R* + iR is an
invariant of the structure generated by X. We should point out that normalizations
for vector fields X such that X A X vanishes to a constant order n > 1 along ¥
are obtained in [9], but we will consider here only the case n = 1. This canon-
ical representation makes it possible to study the equations generated by X in a
neighborhood of the characteristic curve X. We would like to mention a very recent
paper by F. Treves [13] that uses this normalization to study hypoellipticity and
local solvability of complex vector fields in the plane near a linear singularity. The
motivation for our work stems from the theory of hypoanalytic structures (see [12]
and the references therein) and from the theory of generalized analytic functions
(see [18]).

The equations considered here are of the form
Lu= F(r,t,u) and Pu=G(rt,u,Lu),
where P is the (real) second order operator
(0.2) P=LL+B(t)L+B(t)L.

It should be noted that very little is known, even locally, about the structure of the
solutions of second order equations generated by complex vector fields with degen-
eracies. The paper [5] explores the local solvability of a particular case generated
by a vector field of finite type.

An application to a class of second order elliptic operators with a punctual
singularity in R? is given. This class consists of operators of the form
2 62 32 o

+ + +a +a
a
2128 5 | Nag 27—

(03) D =a11 —— (9 81/
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2 INTRODUCTION

where the coefficients are real-valued, smooth, vanish at 0, and satisfy

2
11422 — A7y
C —=——= < C
L= (@ 4 2)2 C
for some positive constants 7 < C5. It turns out that each such operator D is
conjugate in I/\0 (where U is an open neighborhood of 0 € R?) to a multiple of an
operator P given by (0.2).

Our approach is based on a thorough study of the operator L given by
(0.4) Lu= Lu— A(t)u — B(t)u.

For the equation Lu = 0, we introduce particular solutions, called here basic solu-
tions. They have the form

w(r,t) =r7¢(t) + roY(t),
where ¢ € C and ¢(t), ¢(t) are 2r-periodic and C-valued. Chapters 2 and 4
establish the main properties of the basic solutions. In particular, we show that
for every j € Z, there are (up to real multiples) exactly two R-independent basic
solutions

o'i U:.t
wi (r,t) =177 ¢F () + 1% Py (1)

with winding number j. For a given j, if aj+ € C\R, then o} = a}*; and if cf;.L eR
then we have only o < af. The basic solutions play a fundamental role in the

structure of the space of solutions of the equation Lu = F.

In Chapter 6, we show that any solution of Lu = 0 in a cylinder (0, R) x S!
has a Laurent type series expansion in the wji ’s. From the basic solutions of £ and
those of the adjoint operator £*, we construct, in Chapter 5, kernels ©; and 2,
that allow us to obtain a Cauchy Integral Formula (Chapter 6)

(0.5) u(r,t) = / Qlud—C +m£
U C

that represents the solution u of Lu = 0 in terms of its values on the distinguished
boundary 9,U = U\ X.

For the nonhomogeneous equation Lu = F, we construct, in Chapter 7, an
integral operator T', given by

(0.6) TF=— / / (uF + F) 2%
2r JJu p

This operator produces Holder continuous solutions (up to the characteristic circle
Y), when F is in an appropriate LP-space. The properties of T" allow us to estab-
lish, in Chapter 8, a similarity principle between the solutions of the homogeneous
equations Lu = 0 and those of a semilinear equation Lu = F(r,t,u)

The properties of the (real-valued) solutions of Pu = G are studied in Chapters
9 to 11. To each function u we associate a complex valued function w = BLu, called
here the L-gradient of u, and such that w solves an equation of the form Lw = F.
The properties of the solutions of Pu = G can thus be understood in terms of
the properties of their L-gradients. In particular series representations and integral
representations are obtained for u. A maximum principle for the solutions of Pu = 0
holds on the distinguished boundary dyU,, if the spectral values af satisfy a certain
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condition. In the last chapter, we establish the conjugacy between the operator D
and the operator P.






CHAPTER 1

Preliminaries

We start by reducing the main equation Lu = Au -+ B% into a simpler form.
Then, we define a family of operators L., their adjoint £, and prove a Green’s
formula. The operators £, will be extensively used in the next chapter.

Let A =a+ib € RT +iR* and define the vector field L by
0 7]
11 2 _,9
(L.1) L /\Bt U
For A € C*(S!,C), with k € Z1, set

1 [ Ag [ AO}

Ap = — =1 -2 4 %
0=5- 4 A(t)dt, v m— + [Im

A

where for z € R, [z] denotes the greatest integer less or equal than z. Hence,
v € [0, 1). Define the function

¢
m(t) =exp | it +i Im@ t+ l/ (A(s) — Ap)ds | .
A AJo
Note that m(t) is 2m-periodic. The following lemma is easily verified.

LEMMA 1.1. Let A, B € C*(S',C) and m(t) be as above. If u(r,t) is a solution
of the equation

(1.2) Lu = A(t)u+ B(t)u
then the function w(r,t) = ulr, ) solves the equation
m(t)
Ay _
(1.3) Lw =\ ReT —iv w4+ C(t)w

where C(t) = B(t)

In view of this lemma, from now on, we will assume that Re% = 0 and deal
with the simplified equation
(1.4) Lu = —idvu + c(t)u
where v € [0,1) and c(t) € C¥(S!,C).

Consider the family of vector fields

o .0
(15) L( = /\EE = 17‘5

5



6 ABDELHAMID MEZIANI

where A\. = a +ibe, € € R, and the associated operators L. defined by
(1.6) Lou(r,t) = /\f%(r,t) - ir%(r, t) + idevu(r, t) — c(t)u(r,t)

For C-valued functions defined on an open set U € R* x S!, we define the bilinear

form i
< f,9 >=Re (/Uf(r,t)g(r,t) :‘” ) :

For the duality induced by this form, the adjoint of L. is

(1.7) Liv(r,t) = — (/\6%(7*, t) — ir%(r, t) — iAevo(r, t) + ¢(t) v(r, t))

The function z.(r,t) = |r[*<e' is a first integral of L. in R* x S'. That is, Lcz. = 0,
dz. # 0. Furthermore z. : Rt x S' — C* is a diffeomorphism. The following
Green'’s identity will be used throughout.

PROPOSITION 1.2. Let U C Rt x S' be an open set with piecewise smooth
boundary. Let u,v € C°(U) with L.u and L.v integrable. Then,

(1.8) Re (/ uvdze> =<u,Liv>— < Leu,v>.
ou Ze

PROOF. Note that for a differentiable function f(r,t), we have

df—QL( dze e df) and di—e/\dzezm—ad Adt.
zZ

€

Ze Ze T

Hence,
d
/ dze // (uLev +vL, u)dz—; s
Ze Ze Ze drdt
/ (vLeu — uLly v+cvu—ucv)r—.
U r
By taking the real parts, we get (1.8). a

REMARK 1.3. When b = 0 so that A = a € R*. The pushforward via the first
integral 7% reduces the equation Lu = F into a Cauchy Riemann equation with
a singular point of the form

oW ag B(t)
Properties of the solutions of such equations are thoroughly studied in [10]. Many
aspects of CR equations with punctual singularities have been studied by a number
of authors and we would like to mention in particular the following papers [1], [14],
[15], [16] and [17].

W + G(2).

REMARK 1.4. We should point out that the vector fields involved here satisfy
the Nirenberg-Treves Condition (P) at each point of the characteristic circle. For
vector fields X satistying condition (P), there is a rich history for the local solvability
of the C-linear equation Xu = F' (see the books [3], [12] and the references therein).
In [7], the semiglobal solvability of the equation Pu = f is addressed, where P is
a pseudo-differential operator satisfying the Nirenberg-Treves Condition (P). Our
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focus here is first, on the semiglobal solvability in a tubular neighborhood of the
characteristic circle, and second, on the equations containing the term u which
makes them not C-linear.

REMARK 1.5. The operator L, is invariant under the diffeomorphism ®(r,t) =
(—r,t) from R* x S! to R~ x S'. Hence, all the results about L, stated in domains
contained in R x S! have their counterparts for domains in R~ x S!. Throughout
this paper, we will be mainly stating results for » > 0.






CHAPTER 2

Basic Solutions

In this section we introduce the notion of basic solutions for £.. We say that
w is a basic solution of £, if it is a nontrivial solution of L.w = 0, in RT x S, of
the form
(2.1) w(r,t) = r7¢(t) +roy(t),
with o € C and where ¢(t),1(t) are 2r-periodic functions. These solutions play a
crucial role for the equations generated by L.. In a sense, they play roles similar
to those played by the functions 2™ in classical complex and harmonic analysis.

Consider, as our starting point, the basic solutions of £j. These basic solutions
are known, since they can be recovered from those of equation (1.9) (see Remark
1.1). From L, we obtain the properties of the basic solutions for £.. This is
done through continuity arguments in the study of an associated system of 2 x 2
ordinary differential equations in C? with periodic coefficients. By using analytic
dependence of the system with respect to the parameters, the spectral values o of
the monodromy matrix can be tracked down. The main result (Theorem 2.1) states
that for every j € Z, the operator £, has exactly two R-independent basic solutions
with winding number j.

2.1. Properties of basic solutions

We prove that a basic solution has no vanishing points when r > 0 and that
one of its components ¢ or 1 is always dominating.

It is immediate, from (1.6), that in order for a function w(r,t), given by (2.1),
to satisfy L.w = 0, the components ¢ and 1 need to be periodic solutions of the
system of ordinary differential equations

At (t) = i(o — Acv)@(t) + c(t)(t)
. {370 = o =Tt + 200
Note that if o € R, then w = r?(¢(t) + ¥ (t)) and f = ¢ + 1 solves the equation
(2.3) ML) = i(o = A F () + (O FB) -

Now we prove that a basic solution cannot have zeros when r > 0.

PROPOSITION 2.1. Let w(r,t), given by (2.1), be a basic solution of L.. Then
w(r,t) #0 ¥(r,t) € RT x S!.

PrOOF. If ¢ € R, we have w(r,t) = r?f(t) with f(t) satisfying (2.3). If
w(rg, tg) = 0 for some ry > 0, then f(ty) = 0 and so f = 0 by uniqueness of solutions
of the differential equation (2.3). Now, assume that ¢ = «a + i with g € R*.

9



10 ABDELHAMID MEZIANI

Suppose that w is a basic solution and w(rg,tp) = 0 for some (rg,tg) € Rt x st.
Consider the sequence of real numbers ry = roexp(—kn/|8|) with k& € Z*. Then
ry — 0 as k —» oo and riw = rgm. It follows at once from w(rg,ty) = 0 and (2.1)
that w(rg,to) = 0 for every k € Z*. Note that from (2.1) we have |w(r,t)| < Er®,
where E = max(|¢(t)| + |1(t)]). Note also that since L, is elliptic in R* x S, then
the zeros of any solution of the equation L.u = 0 are isolated in Rt x S*.

The pushforward via the mapping z = r*<e’ of the equation £L.w = 0 in RT x§!
is the singular CR equation

oW \we*? =)™
OW _ A _ W
0z 2az 4 2iaz

where W (z) and C(z) are the pushforwards of w(r,t) and ¢(t) and where @ is the
argument of z. We are going to show that W has the form W (z) = H(z) exp(S(z))
where H is holomorphic in the punctured disc D*(0, R), S(z) continuous in D*(0, R)

and satisfies the growth condition |S(z)| < log W for some positive constants K
z

and p. For this, consider the function M (z) defined by
CAwve?? O(2)e*? W(z)

2a 2ia W(z)

for 0 < |z] < R, W(z) # 0 and by M(z) = 1 on the set of isolated points where
W (z) = 0. This function is bounded and it follows from the classical theory of CR
equations (see [2] or [18]) that

_ =1 M (<)
N(z) = - f/;(O,R)C—ngdn

(¢ = &€ +in) is continuous, satisfies Blgéz) = M(z) and

M(z)

|N(21) — N(22)| < A||M||sc|21 — 22| log V21,29 € D(0, R)

|21 — 22|

for some positive constant A. Define S by S(z) = w We have then, for
z#0,
05 - W) and |S(z)| < Blog T—IT ,
P

9z W()
with B = A||M||s. Let H(z) =
0 < |z] < R and it satisfies

W (z) exp(—S(z)). Then H is holomorphic in

(2R)®
|H(2)| < |W(2)|exp(|5(2)]) < IW(Z)lw < Gz
for some constants C; and s € R. The last inequality follows from the estimate
|w| < Er®. This means that the function H has at most a pole at z = 0. Since
w(rk,to) = 0, then H(z;) = 0 for every k and z = r,’;‘e““ — 0. Hence H =0
and w = 0 which is a contradiction. O

COROLLARY 2.2. Ifw = r?¢(t)+r71(t) is a basic solution of L. with o = a+if3
and B # 0, then for every t € R, |¢(t)| # |[¢(¢)].
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PROOF. By contradiction, suppose that there is t; € R such that |¢(tg)| =
|¥(to)]- Let zg € R such that ¢ (tg) = —e'®0¢(ty). Then the positive number
ro = exp(xzo/20) satisfies rz‘,B =Ty #eizo and consequently,

w(ro, to) = r§(ry d(te) + i ¢ (to)) = 0.

This contradicts Proposition 2.1. O

This corollary implies that, for a given basic solution w = r¢ + r7% with
o € C\R, one of the functions ¢ or ¢ is dominant. That is, |¢(t)| > |¥(t)| or
[(t)] > |¢(t)| for every t € R. Hence the winding number of w, Ind(w) is well
defined and we have Ind(w) = Ind(¢) if |¢| > |#| and Ind(w) = Ind(7)) otherwise.
When o € R, we have w = r? f(t) with f nowhere 0 and so Ind(w) = Ind(f).

For a basic solution w = r7¢ + r7¢ with |¢| > [¢|, we will refer to o as the
exponent of w (or a spectral value of £.) and define the character of w by

Char(w) = (o, Ind(w)).
We will denote by Spec(L,) the set of exponents of basic solutions. That is,
(2.4) Spec(L,) = {o € C; 3w, Char(w) = (o, Ind(w))},.

REMARK 2.3. When o € C\R and w = r7¢(t) 4+ r?%(t) is a basic solution with
Char(w) = (o, Ind(¢)), the function w = 77 (ig(t)) +r7i)(t) is also a basic solution
with Char(w) = Char(w) and w, w are R-independent.

When ¢ = 7 € R, and w = r7f(t) is a basic solution with Char(w) =
(7,Ind(f)), it is not always the case that there is a second R-independent basic
solution with the same exponent 7. There is however a second R-independent basic
solution @ = ™ g(t) with the same winding number (Ind(f) = Ind(g)) but with a
different exponent 7’ (see Proposition 2.6).

The following proposition follows from the constancy of the winding number
under continuous deformations.

PROPOSITION 2.4. Let w,(r,t) = r7€)¢(t,e)+r7€)1)(t, €) be a continuous family
of basic solutions of L. with € € I, where I C R is an interval. Then Char(w,)
depends continuously on € and Ind(w,.) is constant.

2.2. The spectral equation and Spec(Lg)

We use the 2 x 2 system of ordinary differential equations to obtain an equation
for the spectral values in terms of the monodromy matrix. Results about the CR
equation (1.9) are then used to list the properties of Spec(Ly).

In order for a function

w(r,t) = r7¢(t) + roy(t)

to be a basic solution of £, the 27r-periodic and C?-valued function V (t) = ( z((tt)) )
must solve the periodic system of differential equations

(Ea,e) V =M(t,0‘,€)V



