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Preface

This book documents recent advances in computational electromagnetics performed
under the auspices of the Center for Computational Electromagnetics at the University
of Illinois, funded mainly by the Multidisciplinary University Research Initiative
(MURI), a program administered by the Air Force Office of Scientific Research.
Other funding agencies also contributed to the success of the Center, such as the
National Science Foundation, Office of Naval Research, Army Research Office, and
Department of Energy.

There is a tremendous need to bring the science of electromagnetic simulation,
also known as computational electromagnetics, to the same confidence level as that
achieved by circuit simulation. However, computational electromagnetics involves
solving Maxwell’s equations, which are more complex than circuit equations. It
is hoped that one day electromagnetic simulation will master this complexity and
enjoy the same pervasiveness in engineering design as does circuit simulation. We
are grateful for the foresight of these funding agencies who share our passion for
developing this technology.

This book does not pretend to be complete, as it reflects our viewpoint of computa-
tional electromagnetics. However, we believe that the knowledge required to support
electromagnetic simulation in a sophisticated manner has to come from physicists,
engineers, mathematicians, and computer scientists. Since electrical engineering is
an offshoot of applied physics, we play the role of applied physicists in the develop-
ment of this technology: we develop this technology based on our physical insight
into the problems, while drawing on knowledge from mathematicians and computer
scientists. The presentation style of most of the chapters of this book is in the manner
of applied physicists or of traditional electromagneticists—hopefully, we sacrifice
mathematical rigor for physical clarity.

Xix
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This book is not an introduction to computational electromagnetics. It documents
recent advances in computational electromagnetics in the manner of a monograph.
A seasoned researcher in the area of computational electromagnetics should have
little difficulty reading the material. It is also hoped that a graduate student or a
professional with some preliminary background in computational electromagnetics
or a classicist in electromagnetics who has done some rapid background reading,
can easily digest the work reported in this book. For one who intends to perform
research in this area, this book will be an excellent starting point. The variety of
topics covered is sufficient to nourish many different research directions in this very
interesting field.

Even though this book deals only with linear problems associated with Maxwell’s
equations, it can be gleaned from a cursory reading that such problems are rich; they
are amenable to different mathematical analyses, and allow for different and inter-
esting algorithm designs. Because of the linearity of the problems, both differential
equation and integral equation solvers can be developed. Moreover, the problems
can be solved in the frequency domain as well as the time domain, enhancing the
efficiency and enriching the variety of these methods.

Solutions to Maxwell’s equations have been sought since the very early days of
the equations’discovery. Electromagnetic analysis has always played an important
role in understanding many scientific and engineering problems.

Chapter 1 gives an introduction to electromagnetic analysis and explains how the
field has evolved into computational electromagnetics in the last few decades. It also
introduces, in a very simplified manner, the recent fast algorithms developed to solve
Maxwell’s equations. The chapter also attempts to give a historical perspective on
electromagnetic analysis and to describe how far we have come since the advent of
Maxwell’s equations.

Chapter 2 presents an introduction to the fast multipole method (FMM) and the
multilevel fast multipole algorithm (MLFMA) in two dimensions. Interpolation,
truncation, and integration errors are discussed. An attempt is also made to relate
FMM to group theory, and to the inherent symmetry of space.

Chapter 3 describes the three-dimensional version of FMM and MLFMA and
demonstrates the application of the fast algorithm to real-world problems. The
algorithm has also been parallelized on a shared-memory machine, and tour-de-
force computation involving close to 10 million unknowns is the most important
achievement of this work.

Chapter 4 outlines the distributed-memory parallelization of MLFMA, encapsu-
lated in a code called ScaleME (Scaleable Multipole Engine). The parallelization of
MLFMA on a distributed memory machine is not an easy task, because different parts
of the computation may reside on different processors. The increased communication
cost with more processors can be an issue here. A 10-million-unknown problem has
also been solved with ScaleME.
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Chapter 5 reports on the low-frequency solution of Maxwell’s equations using fast
algorithms. This chapter describes the treatment needed for FMM and MLFMA to
prevent their catastrophic breakdown at low frequencies. It also describes a method to
apply the LF-MLFMA based on Rao-Willon-Glisson (RWG), wire, and wire-surface
bases while the intrinsic expansion bases are still the loop-tree-star bases. These
bases are designed for low-frequency problems to make the LF-MLFMA efficient
for problems with global loops.

Chapter 6 delves into different error issues involved when solving surface integral
equations related to Maxwell’s theory. Discretization error due to the use of basis
functions, and integration error by replacing integrals with summation are discussed.
Errors result from solving the matrix equation, and deconditioning of the matrix
equation by MOM and its impact on errors are studied. This chapter also discusses
deconditioning due to the near-resonance problem and the low-frequency breakdown
problem.

Chapter 7 deals with a recent topic of intense interest in differential equation
solvers—the theory of perfectly matched layers (PML). The concept of complex
coordinate stretching is discussed. PML is generalized to curvilinear coordinates
as well as to complex media. In this chapter, stability issues related to PML are
studied, and a unified analysis of various PML formulations using differential forms
is included.

Chapter 8 addresses the issue of efficiently solving the forward and inverse prob-
lems for buried objects using FFT-based methods. The detection of buried objects
usually involves loop antennas, and the forward problem involving the solution of
loop antennas over a buried object is discussed in great detail. Moreover, recent
advances in different inversion algorithms are also described.

Chapter 9 touches upon solving the penetrable problem at very low frequencies.
The low-frequency problem encountered in Chapter 5 for metallic objects also occurs
for dielectric and lossy material objects. This chapter describes a way to solve this
problem so that the solution of integral equations remains stable all the way from
zero frequency to microwave frequencies.

Chapter 10 describes an algorithm to solve three-dimensional waveguide structures
using numerical mode matching, but using the finite difference method. The spectral
Lanczos decomposition method is used to find the modes. An algorithm with O(NNV)
memory complexity and O(N'-®) computational complexity is achieved.

Chapter 11 addresses the problem of solving the volume integral equation con-
currently with the surface integral equation. This is particularly important when
dealing with structures having metals as well as dielectric materials. The solutions
are also accelerated with MLFMA as demonstrated in the chapter. Many practical
illustrations of the use of this solution technique are given in this chapter.

Chapter 12 deals with solving axially symmetric, body-of-revolution (BOR) ge-
ometry using the finite element method (FEM). This reduces a three-dimensional
problem to two dimensions, greatly enhancing the efficiency of the solution. Both
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material-coated and metallic objects are considered. The chapter also shows the
practical use of cylindrical PML for truncating the FEM mesh. Treatment of BOR
geometry with appendages is also considered.

Chapter 13 reports on the hybridization in computational electromagnetics. Hy-
bridization between FEM and the absorbing boundary condition (ABC) is discussed
alongside the boundary integral equation (BIE), MLFMA, adaptive absorbing bound-
ary condition (AABC), and shooting and bouncing ray (SBR). Hybridization between
MOM and SBR is also considered. AABC is a promising method of hybridizing FEM
with fast solvers in the future.

Chapter 14 presents different higher-order methods in computational electromag-
netics. Higher-order methods for the surface integral equation as well as for FEM are
considered. Also, the efficient coupling of higher-order methods to fast solvers such
as MLFMA is discussed. In particular, the use of point-based MLFMA is illustrated.
Moreover, a higher-order grid-robust method is also studied in this chapter.

Chapter 15 touches on the topic of asymptotic waveform evaluation (AWE) for
broadband calculation in electromagnetics. Illustrations of this acceleration technique
for broadband calculation are given for metallic antennas, wire antennas, dielectric
scatterers, and microstrip antennas.

Chapter 16 details the analysis of microstrip structure on top of a layered medium.
The derivation of the layered medium Green'’s function together with its numerical
approximation by the complex images is discussed. The use of the fast frequency
sweep method, adaptive integral method, and MLFMA to accelerate solution speed
is studied. A higher-order method to improve solution accuracy is also demonstrated.

Chapter 17 reviews the steepest-descent FMM (SDFMM) to accelerate the solution
speed of quasi-planar structures. For this class of structures, this method reduces both
the computational and memory complexity of MLFMA from O(N log N) to O(N).
Applications to scattering from random rough surfaces, quantum-well gratings, and
microstrip antennas are demonstrated with this analysis method.

Chapter 18 elaborates on the plane-wave time-domain (PWTD) algorithm, which
is an ingenious way of arriving at the time-domain equivalent of FMM and MLFMA..
The integral equation is solved using the marching-on-in-time (MOT) method. Sta-
bility and accuracy issues are carefully analyzed in this chapter. Both the two-level
and multilevel algorithms are presented and demonstrated with examples.

Chapter 19 further develops PWTD for large-scale and real-world applications.
The use of PWTD with the magnetic field integral equation (MFIE), electric field
integral equation (EFIE), and combined field integral equation (CFIE) is illustrated.
Furthermore, scattering and error analysis from complex targets such as aircraft,
almond shapes, and cone-spheres are considered.

Even though a large variety of topics is covered here, we do feel that there is still a
myriad of problems in computational electromagnetics begging to be solved. Due to
the complex nature of computational electromagnetics compared to circuit simulation,
the robustness and stability of these algorithms are still issues to be addressed.
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Another issue is the computational labor associated with these algorithms—more
research needs to be done to enhance their speed. We hope, however, that the work
at our Center marks a new beginning in the era of fast algorithms in computational
electromagnetics.

During the MURI support, we have demonstrated our ability to solve problems
involving 10 million unknowns using the supercomputing facilities of the University
of Illinois. With continued support in this field, together with improvements in com-
puter technology, we predict that a decade from now, solving a problem of this size
will be routine for many applications.

If only electromagnetic fields can talk, they will speak volumes!

WENG CHO CHEW
Urbana-Champaign, Illinois, June 2001
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