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Preface

The revolutionary theory in stochastic finance, which advanced the subject from the
nebulous intuitive stage to the level of an exciting and fast growing scientific disci-
pline, was the work of Fischer Black, Myron Scholes and Robert Merton in 1973.
Twenty-four years later, in 1997, the Nobel Prize was awarded to the two then living
authors, Myron Scholes and Robert Merton.

Stochastic finance and financial engineering sciences have been rapidly expanding
over the past four decades. The main reason for this is the development of sophisti-
cated quantitative methodologies that enabled professionals to manage financial risks.
In recent years, we have witnessed a tremendous acceleration in research efforts aimed
at better comprehension, modeling, and hedging these kinds of risks.

The writing of the present book started seven years ago. Its first version has over
the past six years appeared as a basic textbook in an undergraduate and a postgradu-
ate level course for the students in the Mathematics Department, Aristotle University
of Thessaloniki, Greece, as well as in other departments with students from various
backgrounds. The entire project benefited immensely from the presence of the author
as a Visiting Professor in the Department of Statistical Sciences, University College
London, for over a year; especially, the advance course given by the author at the
London Taught Course Center (LTCC) to the second and third year PhD students of
University College London, Imperial College London, Kings College, London School
of Economics, and Queen Mary College. The course was a continuous time version of
the present book. The response and assessment of the research students greatly helped
in completing the project.

This book aims to provide a foundation course on applied stochastic finance. It
assumes knowledge of only an introductory course in probability theory and basic
mathematical analysis. It is designed for three groups of readers. First, students com-
ing from various backgrounds seeking a basic knowledge on the subject of stochastic
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finance on which to build in various directions; second, financial analysts and practi-
tioners in the investment, banking, and insurance industries; third, other professionals
who are interested in learning, through finance, advanced mathematical and stochastic
methods that are basic to many areas of study.

The author intends to (a) take the lecturer’s stand in the style of writing, i.e. to mo-
tivate the reader for learning and using the various mathematical and stochastic tools
through intuitive explanations, by building step by step only the necessary stochastic
analysis, stochastic process, and measure theory background, while keeping in mind
the final goal of learning the financial techniques. The author feels that finance can be
a strong motivational factor and a great way to learn stochastic and mathematics at an
advanced level. That in finance pays back enormously; (b) emphasize the clarity of
exposition on the generality of results and techniques in order to maximize their effi-
cient use in applications by making the book a useful guide for pricing and hedging
any derivative security included in the text or not by including all proofs and/or neces-
sary references; however, the level of detail included is possibly high but without any
additional mathematical complexity; (c) provide a pedagogical exposition of stochas-
tic finance methodologies that can be used as teaching material for undergraduate and
postgraduate courses for students with various backgrounds. Finally the author makes
the effort and takes the time and energy to make available to the average reader a
self-teaching book, which is a rare quality of any book, especially one on finance.

The usefulness of this book to students with various backgrounds is facilitated by
its organizational design. The book starts with a review of important results from
probability theory that will be useful throughout the entire book (recommended also
for the experienced reader to refresh some results and probably gain some insight) and
is followed by an introduction to the basic financial instruments and the fundamen-
tal principles of financial modeling and arbitrage valuation of derivatives. Chapter
3 presents in detail and depth one of the most useful concepts in applied stochastic
finance, namely, the concept of conditional expectation. It also offers a compact foun-
dation and presentation of basic results on Markov chains, which play a vital role in
modern aspects of stochastic finance. Chapter 4 introduces the discrete time binomial
model and uses it among others as a basic pedagogical instrument for presenting in
depth all relevant concepts of applied stochastic finance. Chapter 5 builds step by
step, enunciated by examples, the most important results from the theory of martin-
gales that are used in the theory and applications of stochastic finance. The days when
one could get a good job if one could only spell the world “martingale” are long past.
Numerous examples, each highlighted and isolated from the text for easy reference
and identification, are introduced. In Chapter 6, at first glance, the stochastic level of
the book seems to take a jump. However, the reader is already smoothly prepared to
absorb and gain sufficient depth into concepts such as Randon-Nikodym derivative,
equivalent martingale measure, non-arbitrage and complete general markets. By the
end of the chapter many of the readers will be familiar with most of what is needed
from measure theory in stochastic finance. In Chapter 7 we study American derivative
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securities both using the binomial model and general markets. Chapter 8 is devoted
to the study of fixed-income markets and interest rate theory in discrete time. Arbi-
trage pricing is discussed and financial products such as European derivatives, interest
rate swaps, interest rate caps and floors and futures contracts are dealt with. Chapter
9 provides basic knowledge of the vast and important subject of credit risk. In our
era, we do not have to really emphasize the importance of the theory of credit risk on
our financial stability. We conclude the main theme of the book with the study of the
Heath-Jarrow-Morton model for the evolution of forward rate process.

The book also contains two appendices. The first one is a short review on the
evolution of stochastic mathematics that changed the financial world. The second is
devoted to the separating hyperplane theorem in R™.

I would like to thank Prof. N. Limnios who first insisted that the present project
should be undertaken by me. I would also like to thank the Department of Statisti-
cal Sciences, University College London for providing everything necessary for the
project. I would especially like to thank Prof. Valerie Isham who made my presence
at UCL possible and the Heads of the Department, Prof. Trevor Sweeting and Prof.
Tom Fearn, for their support and kindness during the writing of the book.

Finally, I would like to deeply thank my family: Olympia, my daughter, who
I discovered is the bravest fighter in life-threatening situations I have ever known;
Aglaia, my daughter, the greatest supporter of all of us; last but not the least, my wife
Febronia, whose patience and ability to bear with me made the completion of the book
possible.

Prof. Panos Vassiliou
January 2010
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Chapter 1

Probability and Random Variables

1.1. Introductory notes

In almost all the interesting problems in finance and especially in those where
it is very important to have an answer, there exists a large degree of randomness.
In other words, the financial entities that play an important role, for example, the
prices of assets, cannot be predicted with accuracy and certainty. The variations that
are observed seem to follow the laws of chance. An immediate consequence of this
is that the models that need to be constructed for the description and prediction of
these important entities contain random variables. Such models are called stochastic
models.

The basis for the study of the randomness of various phenomena we observe and
describe in nature are probability theory and, what may be thought as its extension, the
theory of stochastic processes. In order to provide the reader with as much background
as possible in this self-teaching book, we present in this chapter the gist of probability
theory, which will be useful in understanding the subjects that follow later. The mate-
rial is presented in a compact manner, mostly omitting long proofs and elaborations.
The readers may either skim through the chapter quickly to refresh their memory or
skip it until they need to refer back to something.

It is difficult to include in a moderate chapter an introduction to probability theory
for a reader who has not undergone even an introductory course. However, we will try
to provide some insight into probability concepts, which will prove useful to readers
with all levels of exposure to the subject of probability theory, omitting most of the
proofs. This is usual in books especially on stochastic processes. The reader may find
useful review chapters in Stirzaker (2005) and Ross (1996, 2007). For those readers
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who need an accompanying introductory book in addition, Ross (2002) and Stirzaker
(2007) are recommended.

The important results from the theory of stochastic processes will also be presented
in separate chapters, just before their need arises in the book. An example is the
chapter on discrete martingales.

Further, advanced knowledge from probability theory will also be developed and
presented in separate chapters just before the chapter where it will be used. An exam-
ple is the chapter on conditional expectation which precedes the chapter on discrete
martingales.

1.2. Probability space

It is common experience in life that there exist situations the direction of evolution
of which is not known, i.e. their outcome is not predictable in advance. However, there
are cases where while the outcome is not known in advance, the set of all possible
outcomes is known. Any activity or procedure that may give rise to a well-defined set
of outcomes is called an experiment. The set of all possible outcomes of an experiment
is called the sample space, and is denoted by €. A particular but unspecified outcome
in {2 may be denoted by w. Each outcome w belonging to the sample space €2 is called
an elementary event, while a subset A of (2 is called an event. In particular, 2 is called
the certain event. For any two events A and B of a sample space 2 we define the new
event A U B, which consists of all outcomes that are either in A or in B or in both A
and B. The event A U B will be referred to as the union of the event A and the event
B. For any two events A and B, we also define the new event AN B or AB, and refer
to it as the intersection of A and B as follows: AB consists of all outcomes which
are both in A and B. If the two events A and B are such that the event AB would
not consist of any outcomes, then we write AB = @. We will denote this event as the
null event, and A and B are said to be mutually exclusive.

We also define unions and intersections of a countable number of events in a sim-
ilar manner. If 4;, As, ... are events, the union of these events, denoted by U | E,,,
is defined to be that event, which consists of all outcomes that are in F, for at least

one value of n = 1,2,.... Similarly, the intersection of the events £, denoted by
Ny, E,, is defined to be the event consisting of those outcomes that are in all events
E,,n = 1,2,.... For any event A we define the new event A°, referred to as the

complement of A, to consist of all outcomes in the sample space () that are not in A.

EXAMPLE 1.1. If the experiment consists of rolling a dice, then the sample space is

Q= {1,2,3,4,5,6}
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where the outcome i means that i appeared in the dice. If A = {1,3,4} and B =
{2,3,5} then

AUB={1,2,3,4,5}, ANB = {3}, A° = {2,5,6}.

At this point, we must remark that, while all events are subsets of {) keep track of
events, we require that the family of events is closed under intersections and unions.
Formally we make the following definition.

DEFINITION 1.2. A collection of events is called an event space, and denoted by F,
if it satisfies

(i) @ isin F;

(ii) if A € F, then A® € F;

(vit) if A, € Fforn=1,2,..., then U;Z | A, isin F.

It is known from set theory that a collection of sets that satisfy the above is called a

o-algebra or a o-field.

There are many experiments in which all elementary events of the sample space
have the same chance to occur. Our intuition and experience guide us in this case
to think that all the elementary events should have equal probabilities to occur. This
empirical observation led Abraham De Moivre in 1711 to the following definition:

Let €2 be the sample space of an experiment for which all elementary events are
equally probable and let an event A C €2. Then we define the probability of the event
A and denote it by IP (A) as follows:

-~ Number of elements of event A
~ Number of elements of sample space

P(4)
In modern probability theory founded by Kolmogorov (1931), probability is under-

stood to be a set function, defined on F with values on [0, 1], satisfying the following
axioms:

(@) P)=1,
(i1) 0<P(A) <1 foranyevent A € F,

(14t) For mutually exclusive events A, € F forn = 1,2,..., we have

P(US.;IAM):Z]P(An)- (1.1)
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Note that the physical meaning of probability is not important in this definition. Prop-
erty (1.1) is called the o-additivity.

Given a sample space Q2 and a o-algebra F of its subsets, if a set function I (.)
satisfies the above properties, we call P (.) a probability measure (or probability for
short). The triplet (€2, F, P) is called a probability space.

In the rest of this chapter, we assume that the o-algebra F is rich enough, meaning
that all events under consideration belong to . That is, we consider a probability of
an event without mentioning that the event indeed belongs to the o-algebra.

We have chosen to give a rather formal definition of probability as being a set
function on a o-algebra of events. At this point we should remark that if we repeat
our experiment a large number of times then the proportion of times an event A will
occur converges to P (A). Observations of this nature led also to a very interesting
axiomatic foundation of probability theory via expectation, i.e. on axioms defining
the expectation, see Whittle (2000).

EXAMPLE 1.3. Let us assume that we bought an equity and decided as an experiment
to follow its evolution in the next three days. We assign the number 1 if the price of the
equity was increased on a certain day, and O if the price of the equity was decreased
on the same day. The sample space of this experiment is then the following:

Q={(1,1,1),(1,1,0),(1,0,1),(0,1,1),(1,0,0),(0,1,0),(0,0,1),(0,0,0)}.
(a) Let us consider the set of subsets of {2
Fo ={2,0}.
Then Fy is a o-algebra on €2, since
(1) Qe Fo;
(i) The complement of & is €2 € F; and the complement of 2 is & € Fy;

(i27) Apparently,
QUZ e F.

The o-algebra F contains no information for the true outcome w for any day since
the set @ and the whole sample space €} are always resolved, even without any infor-
mation. The o-algebra Fy is called the trivial o-algebra.

(b) Let us consider the set of subsets of 2

A o= {2,9,[(1,1,1),(1,1,0),(1,0,1),(1,0,0)],
[(0,1,1),(0,1,0),(0,0,1),(0,0,0)]}.



