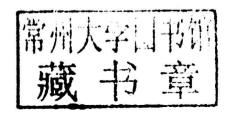
Applied Research in Hydraulics and Heat Flow


Kaveh Hariri Asli, PhD Soltan Ali Ogli Aliyev, PhD

APPLIED RESEARCH IN HYDRAULICS AND HEAT FLOW

Kaveh Hariri Asli, PhD, and Soltan Ali Ogli Aliyev, PhD

Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada Apple Academic Press Inc. 9 Spinnaker Way Waretown, NJ 08758 USA

©2014 by Apple Academic Press, Inc.

Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group

No claim to original U.S. Government works Printed in the United States of America on acid-free paper

International Standard Book Number-13: 978-1-926895-82-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

Library of Congress Control Number: 2014903519

Library and Archives Canada Cataloguing in Publication

Asli, Kaveh Hariri, author

Applied research in hydraulics and heat flow/Kaveh Hariri Asli, PhD and Soltan Ali Ogli Aliyev, PhD

Includes bibliographical references and index.

ISBN 978-1-926895-82-6 (bound)

- 1. Fluid mechanics--Mathematical models--Handbooks, manuals, etc.
- 2. Heat--Transmission--Mathematical models--Handbooks, manuals, etc.
- 3. Hydrodynamics--Mathematical models--Handbooks, manuals, etc.
- 4. Mechanical engineering--Mathematical models--Handbooks, manuals, etc.
- 5. Mechanical engineering--Research--Handbooks, manuals, etc. ,
- I. Aliyev, Soltan Ali Ogli, author II. Title.

QA901.A84 2014

532

C2014-901263-2

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at **www.appleacademicpress.com** and the CRC Press website at **www.crcpress.com**

APPLIED RESEARCH IN HYDRAULICS AND HEAT FLOW

ABOUT THE AUTHORS

Kaveh Hariri Asli, PhD

Kaveh Hariri Asli, PhD, is affiliated with the Department of Mathematics and Mechanics, National Academy of Science of Azerbaijan (AMEA) in Baku, Azerbaijan. He is a professional mechanical engineer with over 30 years of experience in practicing mechanical engineering design and teaching. He is author of over 50 articles and reports in the fields of fluid mechanics, hydraulics, automation and control systems. Dr. Hariri has consulted for a number of major corporations.

Soltan Ali Ogli Aliyev, PhD

Soltan Ali Ogli Aliyev, PhD, is Deputy Director of the Department of Mathematics and Mechanics at the National Academy of Science of Azerbaijan (AMEA) in Baku, Azerbaijan. He served as a professor at several universities. He is the author and editor of several books as well as of a number of papers published in various journals and conference proceedings.

LIST OF ABBREVIATIONS

ACQ ammonium copper quaternary
CCA chromated copper arsenate
CFD computational fluid dynamics
CM condition base maintenance
DVCM discrete vapor cavity model

EDL electric double layer
FD finite differences
FE finite elements

FSI fluid-structure interaction FSP fiber saturation point

FV finite volume

FVM finite volume method

GIS geography information systems

MOC method of characteristics
PLC program logic control
Re. No Reynolds number
RMS root-mean-square
RTC real-time control

UFW unaccounted for water
VCF velocity correction factor
WCM wave characteristic method

LIST OF SYMBOLS

```
k = \text{Permeability } [cm^3 \text{ (liquid)/(cm atm sec)}]
V = Volume of liquid flowing through the specimen (cm^3)
t = \text{Time (sec)}
A = Cross-sectional area of the specimen perpendicular to the direction of
flow (cm3)
\Delta P = Pressure difference between ends of the specimen (atm)
L = \text{Length of specimen parallel to the direction of flow (cm)}
K_g = \text{Superficial gas permeability } [cm^3 (gas)/(cm atm sec)]
V = \text{Volume of gas flowing through the specimen } (cm^3 \text{ (gas)})
P = Pressure at which V is measured (atm)
P = Average pressure across the specimen (atm)
J_f = Liquid free water flow flux, kg/m^2·s
K_l = Specific permeability of liquid water, m^3(liquid)/m
\rho_l = \frac{1}{\text{Density of liquid water, } kg/m^3}
\mu_l = Viscosity of liquid water, P_a.
p_c = \text{Capillary pressure}, p_a
\chi = Water transfer distance, m
\partial p_c / \partial \chi = \text{Capillary pressure gradient}, \ p_c / m
J_{yf} = Water vapor flow flux, kg/m^2·s
K_V = Specific permeability of water vapor, m^3(vapor)/m
\rho_{v}, \mu_{v} = \text{Density} and viscosity of water vapor respectively, kg/m^{3} and \rho_{a}.s
\partial p_V / \partial \chi = \text{Vapor partial pressure gradient}, p_a / m
\rho_s = \text{Basic density of wood, } kg/m^3
```

此为试读,需要完整PDF请访问: www.ertongbook.com

MC = Moisture content of wood, % t = Time, s $\partial (MC)/\partial t$ = The rate of moisture content change, %/s x = Water transfer distance, m ρ_s = Basic density of wood, kg/ m^3 D_{v} = Water vapor diffusion coefficient, m^{2}/s $V = \text{Water flow or discharge}\left(\frac{m^3}{s}\right), \left(\frac{lit}{s}\right)$ $C = \text{The wave velocity}\left(\frac{m}{s}\right)$ E_{MC} = Modulus of elasticity of the liquid (water), E_{MC} = 2.10° $Pa\left(kg/m^2\right)$ E = Modulus of elasticity for pipeline material Steel, E = 2.11° Pa, $\left(kg/m^2\right)$ d = Outer diameter of the pipe (m) δ = Wall thickness (mm) V_0 = Liquid with an average speed (m/s)T = Time (S) h_0 = Ordinate denotes the free surface of the liquid (m) $u = \text{Fluid velocity } \left(m \right)$ λ = Wavelength (hu) = Amplitude a $\frac{\partial h}{\partial t} dx$ = Changing the volume of fluid between planes in a unit time \tilde{h}_0 = Phase velocity (m) v_{Φ} = Expressed in terms of frequency f =Angular frequency ω = Wave number Φ = A function of frequency and wave vector $v_{\varphi}(k)$ = Phase velocity or the velocity of phase fluctuations $\lambda(k)$ = Wavelength k =Waves with a uniform length, but a time-varying amplitude $k_{**}(\omega)$ = Damping vibrations in length

 ω = Waves with stationary in time but varying in length amplitudes

 p_{si0} = Saturated vapor pressure of the components of the mixture at an initial temperature of the mixture T_0 , (Pa)

 μ_2, μ_1 = Molecular weight of the liquid components of the mixture

B =Universal gas constant

 P_i = The vapor pressure inside the bubble (Pa)

 T_{ki} = Temperature evaporating the liquid components (${}^{o}C$)

 l_i = Specific heat of vaporization

D = Diffusion coefficient volatility of the components

 N_{k_0} , N_{c_0} = Molar concentration of 1-th component in the liquid and steam

 c_l and c_{pv} = The specific heats of liquid and vapor at constant pressure, respectively

 a_I = Thermal diffusivity

 $\rho_v = \text{Vapor density } (kg/m^2)$

R = r = R(t) =Radius of the bubble (mm)

 $\lambda_t = \text{Coefficient of thermal conductivity}$

 ΔT = Overheating of the liquid $({}^{o}C)$

 β = Positive and has a pronounced maximum at k_0 = 0,02

 p_1 and p_2 = The pressure component vapor in the bubble (Pa)

 p_{∞} = The pressure of the liquid away from the bubble (Pa)

 σ = Surface tension coefficient of the liquid

 V_1 = Kinematic viscosity of the liquid

 k_R = The concentration of the first component at the interface

 n_i = The number of moles

 $V = \text{Volume } (m^3)$

B = Gas constant

 $T_v =$ The temperature of steam $({}^oC)$

 ρ_i^{\prime} = The density of the mixture components in the vapor bubble (kg/m^2)

 μ_i = Molecular weight

 P_{si} = Saturation pressure (Pa)

 l_i^{-} = Specific heat of vaporization

k = The concentration of dissolved gas in liquid

 v_{Φ} = Speed of long waves

h = Liquid level is above the bottom of the channel

 ξ = Difference of free surface of the liquid and the liquid level is above the bottom of the channel (a deviation from the level of the liquid free surface)

 $u = \text{Fluid velocity } \left(\frac{m}{s} \right)$

 τ = Time period

a =Distance of the order of the amplitude

k = Wave number

 $v_{\Phi}(k)$ = Phase velocity or the velocity of phase fluctuations

 $\lambda(k)$ = Wavelength

 $\omega_{**}(k)$ = Damping the oscillations in time

 λ = Coefficient of combination

 $q = \text{Flow rate } \left(\frac{m^3}{s} \right)$

 $\mu = \text{Fluid dynamic viscosity } \left(\frac{kg}{m.s}\right)$

 $\gamma = \text{Specific weight } \left(\frac{N}{m^3} \right)$

j = Junction point (m)

 \mathcal{Y} = Surge tank and reservoir elevation difference (m)

 $k = \text{Volumetric coefficient } \left(\frac{GN}{m^2}\right)$

T =Period of motion

A =Pipe cross-sectional area (m^2)

dp =Static pressure rise (m)

 h_p = Head gain from a pump (m)

 $h_L =$ Combined head loss (m)

 $E_v = \text{Bulk modulus of elasticity } (Pa), (kg/m^2)$

 α = Kinetic energy correction factor

P =Surge pressure (Pa)

g =Acceleration of gravity $\binom{m}{s^2}$

K =Wave number

 $T_P = \text{Pine thickness } (m)$

 E_P = Pipe module of elasticity (Pa) (kg/m^2)

 $E_W = \text{Module of elasticity of water } (Pa), (kg/m^2)$

 C_1 = Pipe support coefficient

 $Y \max = Max$. Fluctuation

 $R_0 = \text{Radiuses of a bubble (mm)}$

D = Diffusion factor

 β = Cardinal influence of componential structure of a mixture

 N_{k_0} , N_{c_0} = Mole concentration of 1-th component in a liquid and steam

 γ = Adiabatic curve indicator

 c_l , c_{pv} = Specific thermal capacities of a liquid at constant pressure

 a_l = Thermal conductivity factor

 $\rho_{v} = \text{Steam density} \begin{pmatrix} kg \\ m^{3} \end{pmatrix}$ R = Vial radius (mm)

 λ_l = Heat conductivity factor

 k_0 = Values of concentration, therefore

 W_l = Velocity of a liquid on a bubble surface $\binom{m}{s}$

 p_1 and p_2 = Pressure steam component in a bubble (Pa)

 p_{∞} = Pressure of a liquid far from a bubble (Pa)

 σ and V_1 = Factor of a superficial tension of kinematics viscosity of a liquid

B = Gas constant

 $T_v = \text{Temperature of a mixture } \binom{o}{C}$

 $\rho_i' = \text{Density a component of a mix of steam in a bubble } \binom{kg}{m^3}$

 $\mu_i = \text{Molecular weight}$

 j_i = The stream weight

xvi List of Symbols

```
i = \text{Components from an } (i = 1,2) \text{ inter-phase surface in } r = R(t)
w_i = Diffusion speeds of a component on a bubble surface \binom{m}{c}
l_i = Specific warmth of steam formation
k_R = Concentration 1<sup>-th</sup> components on an interface of phases
T_0, T_{ki} = Liquid components boiling temperatures of a binary mixture at initial
pressure P_0, ({}^{o}C)
D = Diffusion factor
\lambda_l = Heat conductivity factor
N_{\rm in} = Parameter of Nusselt
a_l = Thermal conductivity of liquids
C_l = Factor of a specific thermal capacity
Pe_i = Number of Pekle
Sh = Parameter of Shervud
Pe_p = Diffusion number the Pekle
\rho = Density of the binary mix \binom{kg}{m^3}
t = \text{Time } (S)
\lambda_0 = Unit of length
V = \text{Velocity}(m/)
S = \text{Length}(m)
D = \text{Diameter of each pipe } (mm)
R = Pipe radius (mm)
V = \text{Fluid dynamic viscosity } \left(\frac{kg}{m.s}\right)
h_p = Head gain from a pump (m)
h_L = Combined head loss (m)
C = \text{Velocity of Surge wave } \left( \frac{m}{s} \right)
P/_{\gamma} = Pressure head (m)
Z = \text{Elevation head } (m)
```

 $V^2/_{2g}$ = Velocity head (m)

 $\gamma = \text{Specific weight } \left(\frac{N}{m^3} \right)$

Z = Elevation (m)

 H_P = Surge wave head at intersection points of characteristic lines (m)

 V_P = Surge wave velocity at pipeline points- intersection points of characteristic lines $\left(m\right)$

 V_n = Surge wave velocity at right hand side of intersection points of characteristic lines $\binom{m}{s}$

 H_{ri} = Surge wave head at right hand side of intersection points of characteristic lines (m)

 V_{le} = Surge wave velocity at left hand side of intersection points of characteristic lines $\binom{m}{s}$

 H_{le} = Surge wave head at left hand side of intersection points of characteristic lines (m)

$$P = \text{Pressure}(bar), \binom{N}{m^2}$$

dv = Incremental change in liquid volume with respect to initial volume $\begin{pmatrix} d\rho/\rho \end{pmatrix}$ = incremental change in liquid density with respect to initial density

SUPERSCRIPTS

 C^- = Characteristic lines with negative slope

 C^+ = Characteristic lines with positive slope

SUBSCRIPTS

Min. = Minimum

Max. = Maximum

Lab. = Laboratory