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PREFACE

This is a book about fluid mechanics. In contrast to the usual books on that subject, the
present volume is an exposition of the mechanics of non-Newtonian fluids, such as polymer
melts, polymer solutions, and suspensions. More than 10 years ago, when the first notes
were compiled, I was convinced that a need existed for a book which could be used to
prepare beginning graduate students for reading current literature associated with the
flow of rheologically complex materials. An intervening decade of teaching and research
in the subject of non-Newtonian fluid mechanics has sharpened my own interest and
knowledge, and it is hoped that the fruits of this experience will, in some measure, be
passed on to the reader.

Although needs of beginning graduate students have been a primary motivation for
this volume, its contents are intended for all research engineers who wish to learn the
fundamentals governing flow of polymer melts, polymer solutions, and suspensions.
The book is for people in research because one will not find an extensive treatment of the
process technology of non-Newtonian fluids. That is not to say, however, that the subject
has been approached as a mathematical exercise, free of real fluids and real fluid mech-
anical phenomena. Hence the book is also addressed to those with an engineering outlook—
students and practitioners, academicians and industrial research people—who wish to
learn what it is, at this writing, that we know about non-Newtonian fluids.

I ha' e said that process technology is not covered in detail. Nevertheless, it is hoped
that most readers will have an interest in the technology of rheologically comnplex fluids.
It is my belief that a fundamental appreciation of the problems of technology requires
firm grounding in the mathematical and physical language that describes mechanics of
non-Newtonian fluids, i.e., in rheology. A comprehensive exposition of rheology requires
a somewhat higher level of mathematical notation than is necessary for classical fluid
mechanics. This fact has been accepted at the outset, and two full chapters are devoted
to development of vectors and tensors. Their inclusion means that the volume should be
essentially self-coﬂtamed for one who is familiar with undergraduatc-level fluid mechanics
or transport phcnomena

Following an introduction and the mathematical developments of Chapters 2 and 3,

" Chapter 4 is a concise statement of the conservation equations of continuum mechanics.
The next two chapters contain principles relating to description of deformation and of
constitutive equations. These chapters draw heavily from the work of Truesdell and Noll.

xi



xii Preface

In Chapter 7 one finally reaches the stage where a fluid model can be discussed. Noll’s
concept of the simple fluid is developed.

Chapter 8 is a discussion of means for measurement of the viscometric functions noted
in Chapter 7.

Simple-fluid behavior in some prototype nonviscometric flows is treated in Chapter g.

To this point the book has concentrated on continuum behavior. In Chapter 10 more
specialized constitutive equations, including those which have been developed from
elementary discrete models and lead to linear viscoelasticity, are discussed.

Principles enunciated in earlier chapters are used to generalize some of these linear
models in Chapter 11. Several choices are available for development of constitutive
equations which account for nonlinear behavior. It is possible to explain the subject with
a single formalism. On the other hand, one can emphasize the multiplicity of approaches
that have been used in the important research literature. The culmination of the latter
course would be an encyclopedic listing of all constitutive equations which have enjoyed
some measure of success. A middle ground has been followed in Chapter 11 in hopes that
the reader will clearly see the fundamental concepts which permeate all of the *‘systems”,
and will also become familiar with several approaches to the subject, so that papers
developed from an Oldroyd, Noll-Coleman, or Rivlin formalism will all be accessible.

Chapter 12 is a wide-ranging description of fluid mechanical phenomena exhibited by
non-Newtonian materials, It is especially true in this chapter that selection from an
almost limitless supply of examples and points of view represents a combination of the
author’s biased interests and his feeling of responsibility for some degree of balance.

The book concludes with an introduction to the subject of suspenéion rheology. Sus-
pension models are particularly useful as a conceptual aid to the fluid mechanist because
one can show, through application of classical fluid mechanics on a microscale, d rigorous
physical basis for bulk phenomena. Many of the bulk phenomena predicted from sus-
pension theory also occur with polymer melts and solutions. Although the fundamental
physics of the latter is surely different in detail from that governing a suspension, suspen-
sions do have useful modeling properties and are therefore included.

Non-Newtonian fluid mechanics is a quantitative subject and, as is also true of classical
fluid mechanics, cannot be learned passively and without practice at theorem proving
and problem solving. To this end, a few problems have been suggested at the end of most
chapters. In early portions of the book these tend to be amplification or verification of
derivations in the text. In later chapters, numerical problems dealing with viscometry
and design have been included. It is anticipated that these problems will be supplemented
as needed.

It is a challenge to write about a subject that is active. However, the day must come
when an author decides to put his material into print without yet another revision to
include recent work. I believe that the main ideas of this book have an importance sufficient
to transcend the inevitable new theories and experiments which will appear in the literature
between the time of writing and the time of.publication.

It would be impossible to acknowledge all of those who have contributed to the creation
of this volume. Thoughtful suggestions have consistently come from numerous Princeton
graduate students. I would be remiss, however, to neglect this opportunity to record the
critical reading of an early manuscript by Professor Martin Feinberg, and the great help
in matters pedagogical and editorial provided by Dr. Andrew Kraynik.

Colleagues here and elsewhere have been gracious in responding to my requests for
critiques of various chapters, and many of them will, I hope, recognize improvements



Preface  xiil

prompted by their suggestions. Professor Roger Tanner’s thorough review of all but the
last chapter has resulted in a great many changes. He provided a timely voice of con-
science against the author’s urge to call the manuscript “finished”.

Mrs. Loretta Leach has labored with patience, effectiveness, and even temperament
far beyond that to be expected from a typist faced with the bewildering array of symbols
appearing here.

My family and friends have suffered the indignities and neglect known all too well to
families and friends of authors.

Finally, there is the quiet room at 1836 and all that it connotes. Without it the book
could not have been born.

Princeton, New Fersey W. R. SCHOWALTER
March 1976
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CHAPTER 1

INTRODUCTION

1.1. WHAT THE WORDS MEAN

T}iowwho_ are familiar with the subject know that the words Fluid Mechanics in a book
title generally mean something less than that. How much less varies from volume to
volume, but, in many instances, the term is understood to mean the mechanics of New-
tonian fluids. A Newtonian fluid is one for which a linear relation exists between stress and
the spatial variation of velocity. If changes in fluid density are not important, the constant
of proportionality is the viscosity, a characteristic constant of the material at a given
temperature and pressure. Non-Newtonian fluid mechanics is the mechanics of fluids for
which the stress at a given temperature and pressure is not a linear function of the spatial
variation of velocity.

Newtonian fluid mechanics underwent a transformation during the first half of this
century. Primary causes for the transformation were the concept of a boundary layer,
put forward by Prandtl in 1904 [1], and the development of thc aircraft industry. The
latter made it necessary for engineers to achieve an understanding of exterior flows of air -
past objects and to develop design procedures to deal with these flows. In contrast, non-
Newtonian fluid mechanics has evolved more recently. To a large extent its origins are
found in tests of polymeric materials by physical chemists who wished to relate the bulk-
flow behavior of polymers to molecular structure. A driving force, not unlike that supplied
earlier for Newtonian fluids by the infant aircraft industry, was provided by the commercial
development of polymeric materials and the resulting need for rational design procedures
and correlations. At this juncture, chemical engineers became substantially involved.
They were largely responsible for integrating the discipline of classical fluid mechanics
with the chemists’ studies of stress response of polymeric systems under strain. Over the
past 20 years this has led to a mechanics of non-Newtonian fluids, a subject which has
developed largely outside the main avenues of activity in the field of Newtonian fluid
mechanics.

+ Rheology, the study of flow of materials, includes classification of various types of non-
Newtonian flow behavior. The classification is necessary because of the negative sense in
which a non-Newtonian fluid is defined; that is to say, one must know what a fluid s,
not what it is not, before useful equations describing the motion can be written. Rheclogists
seek to classify flow behavior in terms sufficiently specific to permit prediction of the flow

1



2 Mechanics of Non-Newtonian Fluids

behavior of real systems, but also sufficiently general to avoid useless subdivision and
redundancy.

1.2. THE PERVASIVENESS OF NON-NEWTONIAN FLUIDS

Although non-Newtonian fluids were largely bypassed by those responsible for develop-
ment of the applied science of fuid mechanics, fluids which exhibit rheological response
vastly different from such Newtonian fluids as air or water are encountered daily. Non-
Newtonian response is typically observed ‘n concentrated suspensions and in high molecu-
lar-weight materials. One of the best opportunities to observe non-Newtonian behavior
is found in the kitchen. Examples of non-Newtonian fluids include salad dressings, butter,
whipped cream, and doughs. Anyone who has separated eggs is aware of
the “strange” elastic and tensile properties of egg white. The resistance of egg white to
stretching is characteristic of polymer solutions and melts and is a phenomenon important
in, for example, the drawing of molten nylon filaments during the production of synthetic
fiber. : .

Most biologically important fluids contain high molecular-weight components and are,
therefore, non-Newtonian. The rheology of blood has received much study. Blood is
rheologically complex on two counts: it is a suspension because erythrocytes with charac-
teristic dimensions of several micrometers are present in excess of 40 vol%, and the sus-
pending fluid itsell exhibits non-INewtonian behavior because of the presence of high
molecular-weight protein. The importance of rheological properties of other body fluids
is now recognized. In particular, the rheological response of mucous in respiratory systems
of both infants and adults is an important factor for proper respiratory behavior. The
lubricating action of synovial fluid in joints is, likewise, strongly dependent on rheological
properties. .

Anyone who has played with that archetype of rheologically complex material, “silly
putty”, is aware that classical distinctions between solids and fluids are not always
helpful. Indeed, non-Newtonian materials are often classified by the term “visco-elastic”,
indicating that they display both the properties of viscous fluids and elastic solids. Given
this, the term non-Newtonian fluid mechanics is also open to interpretation, and, in
Chapter 7; we shall state precisely what we mean by a fluid. The fact that certain materials,
commonly thought of as solids, nevertheless exhibit flow properties usually associated
with liquids, is also evident in geological phenomena: the motion of everything from
sediment beds to mountain ranges is governed by rheological characteristics.

1.3. THE PERVERSENESS OF NON-NEWTONIAN FLUIDS

For the academician, non-Newtonian fluids offer a new challenge for description and
understanding. Although we have seen that examples are commonplace, most of our
intuition concerning the behavior of fluids is centered on Newtonian fluids. Those who
have completed formal study of (Newtonian) fluid mechanics must sometimes ignore their*
intuition if they hope to predict non-Newtonian behavior. The subject is sufficiently new
so that many “classical” flows of viscous fluids are still to be studied systematically. Those
which have been examined have often revealed surprising new phenomena. We present
a few examples below.
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(i) Jet Stability

Stability of free and enclosed jets has engaged the attention of many great fluid mech-
anists, the analysis of Rayleigh being an excellent example. He showed that interfacial
forces cause a free inviscid jet to be unstable when the characteristic wavelength of a
disturbance on the jet surface exceeds the circumference of the jet. Subsequent work,
experimental and theoretical, has led to an understanding of the growth of surface dis-
turbances of certain wavelengths, which leads to the breakup of viscous Newtonian jets [2].
In jets with appreciable elasticity, however, breakup does not occur by clearly defined
waves. An example is presented in Fig. 1.1.

(if) Jet Expansion

Classical analysis of a free jet, roughly confirmed experimentally for viscous Newtonian
jets at sufficiently high flow rates, indicates that the jet diameter will decrease upon exit
from a tube [4]. Beyond effects due to gravity, the contraction is a consequence of momen-
tum conservation during adjustment of the velocity distribution in the jet to a flat profile
(Fig. 1.2a). Viscoelastic jets, however, typically swell upon exit from a tube as a result
of relaxation of elastic forces (Fig. 1.2b).

(iii) Drag Reduction

For reasons which are far from understood, it is an experimental fact that small amounts
of polymer dissolved in a liquid can drastically reduce the skin friction of a fluid in turbulent
flow. A graphic practical example is shown in Fig. 1.3. One notes that it is possible for
perversity to be turned to advantage.

1.4. NON-NEWTONIAN FLUID MECHANICS AND
THE POLYMER INDUSTRY

The unusual flow properties of polymer melts and solutions, together with the desirable
attributes of many polymeric solids, hz’wc resulted in development of the huge worldwide
industry of polymer processing. We have already referred to the manufacture of synthetic,
fiber from polymer melts. In a typical installation, fiber is made by forcing a molten
polymer, such as nylon, through a die containing perhaps a few hundred holes, each with
a diameter of approximately 0.01 in. As individual filaments of molten polvmer are drawn
away from the die; they are cooled by the surrounding air and are simultaneously stretched
to a smaller diameter. Following cooling and solidification the filaments are wound
together to form a composite filament on a bobbin or take-up reel. Filament speeds in
excess of 5000 ft/min are not uncommon (Fig. 1.4).

Large parts of automobiles and domestic appliances are often formed by;njection
molding. This is a highly unsteady process in which a molten polymer is forced in‘o a mold
and then allowed to solidify (Fig. 1.5). Often the whole process is repeated by a;machine
at intervals of only a few seconds.

i



4 Mechanics of Non-Newtonian Fluids

Another important polymer processing operation is film blowing (Fig. 1.6) in which the
deformation approaches biaxial straining. This is to be contrasted to injection molding
operations in which the predominant motion experienced by the molten polymer is often
laminar shearing, or with fiber spinning, where the flow is primarily uniaxial stretching.
if one is to perform laboratory flow experiments that will be helpful in predicting behavior
in polymer-processing operations, it is clear that the kinematic and dynamic distinctions
between these three processes should be understood.

One cannot fail to note the importance of non-Newtonian fluid mechanics in the poly-
merization process itsclf. During the polymerization, which is generally carried out under
batch conditions with transient transfer of heat and mass, the batch viscosity changes
from that of water to perhaps 108 poise. '

1.5. SOME OTHER APPLICATIONS

In many cases the marketability of a polymer is due to the rheologically complex
behavior of the material. An example can be found in the compounding of materials for
coating of surfaces. The non-Newtonian behavior of paints is an important factor in
determining the “hrushability’’ of a paint. Interesting tests have been devised to measure
this quality in the laboratory. One wishes to have a paint that will not show brush marks
after drying; on the other hand, if the paint is too thin it will not adequately cover a
surface. Similarly, the art of paper coating is highly dependent on the rheology of the
coating material. In conventional coating applications the coating ‘““color”, as it is called,
is subjected to extreme variations of high and low shearing.

The petroleum industry uses large quantities of “drilling muds” to lubricate the drill bit
and to carry rock chips out of the hole during drilling of oil wells. It is important to have
muds which exhibit low viscosity under shearing but which are very thick at rest, thus
preventing rapid settling of chips when the drilling unit is not in operation.

Further exalecs can be cited almost without limit. We note in closing this section that
most foodstuffs are non-Newtonian. This is important in respect both to food processing
and to the preparation of acceptable natural food substitutes.

1.6. RELEVANCE

The foregoing illustrations of non-Newtonian fluid mechanics in the polymer and related
industries ar~ not included as a prelude to the unfolding of design equations suitable for
each practical engineering need. It has already been stated in the Preface that this is not
a book on polymer processing. Nevertheless, it is often useful to see the possible scope for
application of the fundamentals of a subject. At present, the fundamentals of non-Newtonian
fluid mechanics are known to a group of academic and industrial engineers and scientists
which, given the pervasiveness of industrially important operations involving non-
Newtonian flow, is numerically small. It is generally recognized by eduzators and practi-
tioners alike that a command of the fundamentals of classical fluid mechanics is essential
for thase who must deal, albeit in an approximate way, with such complex problems as
ocean dynamics, aircraft design, and flow through porous media. This book is motivated
Ly the corresponding belief that those who are engaged with non-Newtonian fluids shon!
be conversant with the fundamentals of that subject.
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CHAPTER 2

LINEAR TRANSFORMATIONS,
VECTOR SPACES, VECTORS

2.1. INTRODUCTION

One might argue that there has been sufficient proliferation of guides to vectors
and tensors, either in book form [1, 2] or as adjuncts to books of interest to rheologists
[3-6], to make another attempt unnecessary. Least of all, the argument might continue,
should a monograph which is claimed to be an exposition of the physical behavior of
fluids begin with two chapters.devoted largely to an explanation of mathematical
symbols. ’

A decision to the contrary has been prompted by several factors. It is believed that some
mathematical tools unlikely to be in the firm grasp of most engineers and chemists can
nevertheless be very useful in explaining problems in non-Newsonian fluid mechanics.
Also, one obtains the impression from both engineering students and practitioners that an
understanding of the tensor concept and its application to problems of rheological interest
are difficult to obtain from any single source. It would be presumptuous to hope that
appearance of one more volume will remedy the matter. Nevertheless, there does seem
“to be ample justification for another presentation of the subject. It is hoped that the
mathematical background presented in the first two chapters will help to provide a book
which is reasonably self-contained for most readers.

This preamble has been written with the hope that it will help to motivate the reader
to spend time on the early chapters even though primary interests lie in the physical
aspects of rheology. Those who do not find the mathematical notation or operations of
this book unfamiliar, are encouraged to proceed to Chapter 4 or to some of the references
cited at the end of Chapter 3, which provide more completeness and rigor than is offered
here.

The purpose of this chapter is to introduce the concept of a vector in a manner somewhat
more precise than may have been previously experienced by the reader. The reason for
this is to lay a serviceable foundation for the tensor concept of Chapter 3. Of particular
importance iz subsequent paragraphs are the notions of and distinctions between vectors,
base vectors, vector components, covariant components, and contravariant components.
However, before launching into a host of definitions, we establish a point of departure
with a familiar example.



