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Preface

1 prefer the open landscape under a clear sky with its depth
of perspective, where the wealth of sharply defined nearby
details gradually fades away towards the horizon.

This book, which is in two parts, provides an introduction to the theory of vector-
valued functions on Euclidean space. We focus on four main objects of study
and in addition consider the interactions between these. Volume I is devoted to
differentiation. Differentiable functions on R” come first, in Chapters 1 through 3.
Next, differentiable manifolds embedded in R” are discussed, in Chapters4 and 5. In
Volume II we take up integration. Chapter 6 deals with the theory of n-dimensional
integration over R”. Finally, in Chapters 7 and 8 lower-dimensional integration over
submanifolds of R” is developed; particular attention is paid to vector analysis and
the thedry of differential forms, which are treated independently from each other.
Generally speaking, the emphasis is on geometric aspects of analysis rather than on
matters belonging to functional analysis.

In presenting the material we have been intentionally concrete, aiming at a
thorough understanding of Euclidean space. Once this case is properly understood,
it becomes easier to move on to abstract metric spaces or manifolds and to infinite-
dimensional function spaces. If the general theory is introduced too soon, the reader
might get confused about its relevance and lose motivation. Yet we have tried to
organize the book as economically as we could, for instance by making use of linear
algebra whenever possible and minimizing the number of €—8 arguments, always
without sacrificing rigor. In many cases, a fresh look at old problems, by ourselves
and others, led to results or proofs in a form not found in current analysis textbooks.
Quite often, similar techniques apply in different parts of mathematics; on the other
hand, different techniques may be used to prove the same result. We offer ample
illustration of these two principles, in the theory as well as the exercises.

A working knowledge of analysis in one real variable and linear algebra is a
prerequisite; furthermore, familiarity with differentiable mappings and submani-
folds of R", as discussed in volume [, for instance. The main parts of the theory
can be used as a text for an introductory course of one semester, as we have been
doing for second-year students in Utrecht during the last decade. Sections at the
end of many chapters usually contain applications that can be omitted in case of
time constraints.

This volume contains 234 exercises, out of a total of 568, offering variations
and applications of the main theory, as well as special cases and openings toward
applications beyond the scope of this book. Next to routine exercises we tried
also to include exercises that represent some mathematical idea. The exercises are
independent from each other unless indicated otherwise, and therefore results are
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Xii ‘ Preface

sometimes repeated. We have run student seminars based on a selection of the more
challenging exercises.

In our experience, interest may be stimulated if from the beginning the stu-
dent can perceive analysis as a subject intimately connected with many other parts
of mathematics and physics: algebra, electromagnetism, geometry, including dif-
ferential geometry, and topology, Lie groups, mechanics, number theory, partial
differential equations, probability, special functions, to name the most important
examples. In order to emphasize these relations, many exercises show the way in
which results from the aforementioned fields fit in with the present theory; prior
knowledge of these subjects is not assumed, however. We hope in this fashion to
have created a landscape as preferred by Weyl,! thereby contributing to motivation,
and facilitating the transition to more advanced treatments and topics.

lW(:yl. H.: The Classical Groups. Princeton University Press, Princeton 1939, p. viii.



Preface xii

of material, especially because there are many people for whom geometrical
reasoning is easier and more natural than purely analytic reasoning, and for them
an early exposure to geometrical ideas can only be helpful. As a general guide to
selecting material, section headings within chapters are printed in two different
styles. Fundamental material is marked by boldface headings, while more
advanced or supplementary topics are marked by boldface italics. All of the last
chapter falls into this category. The same convention of type-face distinguishes
those exercises which are central to the development of the mathematics from
those which are peripheral.

The exercises form an integral part of the book. They are inserted in the
middle of the text, and they are designed to be worked when they are first
encountered. Usually the text after an exercise will assume that the reader has
worked and understood the exercise. The reader who does not have the time to
work an exercise should nevertheless read it and try to understand its result.
Hints and some solutions will be found at the end of the book.

Background assumed of the reader

Most of this book should be understandable to an advanced under-
graduate or beginning graduate student in theoretical physics or applied math-
ematics. It presupposes reasonable facility with vector calculus, calculus of many
variables, matrix algebra (including eigenvectors and determinants), and a little
operator theory of the sort one learns in elementary quantum mechanics. The
physical applications are drawn from a variety of fields, and not everyone will
feel at home with them all. It should be possible to skip many sections on
physics without undue loss of continuity, but it would probably be unrealistic
to attempt this book without some familiarity with classical mechanics, special
relativity, and electromagnetism. The bibliography at the end of chapter 1 lists
some books which provide suitable background.

I want to acknowledge my debt to the many people, both colieagues and
teachers, who have helped me to appreciate the beauty of differential geometry
and understand its usefulness in physics. I am especially indebted to Kip Thorne,
Rafael Sorkin, John Friedman, and Frank Estabrook. I also want to thank the
first two and many patient students at University College, Cardiff, for their com-
ments on earlier versions of this book. Two of my students, Neil Comins and
Brian Wade, deserve special mention for their careful and constructive sug-
gestions. It is also a pleasure to thank Suzanne Ball, Jane Owen, and Margaret
Wilkinson for their fast and accurate typing of the manuscript through all its
revisions. Finally, [ thank my wife for her patience and encouragement, par-
ticularly during the last few hectic months.

Cardiff, 30 June 1979 Bernard Schutz



Introduction

Motivation. Analysis came to life in the number space R" of dimension n and its
complex analog C". Developments ever since have consistently shown that further
progress and better understanding can be achieved by generalizing the notion of
space, for instance to that of a manifold, of a topological vector space, or of a
scheme, an algebraic or complex space having infinitesimal neighborhoods, each of
these being defined over a field of characteristic which is 0 or positive. The search
for unification by continuously reworking old results and blending these with new
ones, which is so characteristic of mathematics, nowadays tends to be carried out
more and more in these newer contexts, thus bypassing R”. As a result of this
the uninitiated, for whom R” is still a difficult object, runs the risk of learning
analysis in several real variables in a suboptimal manner. Nevertheless, to quote F.
and R. Nevanlinna: “The elimination of coordinates signifies a gain not only in a
formal sense. It leads to a greater unity and simplicity in the theory of functions
of arbitrarily many variables, the algebraic structure of analysis is clarified, and
at the same time the geometric aspects of linear algebra become more prominent,
which simplifies one’s ability to comprehend the overall structures and promotes
the formation of new ideas and methods” 2

In this text we have tried to strike a balance between the concrete and the abstract:
a treatment of integral calculus in the traditional R” by efficient methods and using
contemporary terminology, providing solid background and adequate preparation
for reading more advanced works. The exercises are tightly coordinated with the
theory, and most of them have been tried out during practice sessions or exams.
Illustrative examples and exercises are offered in order to support and strengthen
the reader’s intuition.

Organization. This is the second volume, devoted to integration, of a book in
two parts; the first volume treats differentiation. The volume at hand uses results
from the preceding one, but it should be accessible to the reader who has acquired
a working knowledge of differentiable mappings and submanifoids of R". Only
some of the exercises might require special results from Volume I.

In a subject like this with its many interrelations, the arrangement of the material
is more or less determined by the proofs one prefers to or is able to give. Other ways
of organizing are possible, but it is our experience that it is not such a simple matter to
avoid confusing the reader. In particular, because the Change of Variables Theorem
in the present volume is about diffeomorphisms, it is necessary to introduce these
initially, in Volume [; a subsequent discussion of the Inverse Function Theorems
then is a plausible inference. Next, applications in geometry, to the theory of
differentiable manifolds, are natural. This geometry in its turn is indispensable for
the description of the boundaries of the open sets that occur in this volume, in the
Theorem on Integration of a Total Derivative in R”, the generalization to R” of the

Nevanlinna, F.. Nevanlinna. R.: Absolute Analysis. Springer-Verlag, Berlin 1973, p. 1.
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Xvi Introduction

Fundamental Theorem of Integral Calculus on R. This is why differentiation is
treated in the first volume and integration in this second. Moreover, most known
proofs of the Change of Variables Theorem require an Inverse Function, or the
Implicit Function Theorem, as does our first proof. However, for the benefit of
those readers who prefer a discussion of integration at an early stage, we have
included a second proof of the Change of Variables Theorem by elementary means.

We have stuck to the (admittedly, old-fashioned) theory of Riemann integration.
In our department students take a separate course on Lebesgue integration, where
its essential role in establishing completeness in many function spaces is carefully
discussed. For the topics in this book, however, the Lebesgue integral is not needed
and introducing it would cause an overload. In the applications considered, Arzela’s
Dominated Convergence Theorem, for which we give a short proof, is an effective
alternative for Lebesgue’s Dominated Convergence Theorem.

On some technical points. We have tried hard to reduce the number of €4
arguments, while maintaining a uniform and high level of rigor.

Even for linear coordinate transformations the Change of Variables Theorem
is nontrivial, in contrast to the corresponding result in linear algebra. This stems
from the fact that in linear algebra the behavior of volume under invertible linear
transformations is usually part of the definition of volume. In analysis the notion
of volume relies on the Riemann integral, and for the latter only invariance under
translations is an immediate consequence of the definition.

The d-dimensional density on a d-dimensional submanifold in R” is considered
from two complementary points of view. On the one hand, the tangent space of the
manifold can be mapped onto RY ~ R? x {Og»—«} C R" by means of a suitable
orthogonal transformation; pulling back the d-volume on R¥ under this mapping
one then finds a d-density on the manifold. On the other hand, one can supplement
the basis B, for the tangent space by a set of mutually perpendicular unit vectors
all of which are perpendicular to the tangent space, to form a basis B, for R". Next
one defines the d-volume of the span of B, to be the n-volume of the span of B, (in
other words, area equals volume divided by length). Both ways of thinking lead to
the same formalism, which unifies the many different formulae that are in use.

Vector analysis should look familiar to students in physics: therefore we have
chosen to center on the notion of vector field initially and on that of differential form
only later on. Leitmotiv in our treatment of vector analysis is the generalization of
the Fundamental Theorem of Integral Calculus on R to a theorem on R”. There are
two aspects to the Fundamental Theorem of Integral Calculus on R: the existence
of an antiderivative for a continuous function; and the equality of the integral of
a derivative of a function over an open set with the integral of the function itself
over the boundary of that set. By generalizing the former aspect one arrives at
the infinitesimal notions in vector analysis, like grad, curl, div; and at Poincaré’s
Lemma, and its relation with homotopy. Likewise, the latter aspect leads to the -
global notions, like the integral theorems, and their relations to homology.

This generalization to R” begins with the Theorem on Integration of a Total
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Derivative, for which an easy proof is offered, by means of a local substitution of
variables that flattens the boundary. All other global theorems are reduced to this
theorem.

The existence of an antiderivative (or potential) for a vector field on R" with
n > | requires integrability conditions to be satisfied. That is, one needs the
vanishing of an obstruction against integrability, viz. of Af, twice the anti-adjoint
part of the total derivative Df of the vector field f. In R? and R®, Af essentiatly
is the curl of f. Furthermore, Af approximately equals the sum of the values of f
at the vertices of a parallelogram, and that sum in turn is a Riemann sum for a line
integral of f along that parallelogram. Globalization of this argument leads to a
rudimentary form of Stokes™ Integral Theorem: a relation between the circulation
of f and a surface integral of Af, i.e. an integral of the obstruction.

Vector analysis in R is not a study of partial derivatives of components of vector-
valued functions, leading to a coordinate-dependent formulation and a “débauche
d’indices”. Rather, it is an investigation of these functions and of their total deriva-
tives in their entirety, which is greatly facilitated by linear algebra, especially by the
decomposition of the derivative into self-adjoint and anti-adjoint parts using adjoint
linear operators.

The definition of positive orientation of a curve is an infinitesimal one. In
concrete examples it is often easy to verify whether it is satisfied without an appeal
to geometric intuition. The global definition, which is current in many elementary
texts, is less rigorous and may lead to cumbersome formulations and/or proofs, of
Green’s and Stokes’ Integral Theorems in particular.

Although formally the theory of differential forms receives an independent
treatment, the stage for it is in fact set by much of the preceding material. The main
result in the theory is Stokes’ Theorem, and the whole discussion aims at proving
that theorem at the earliest possible moment. Therefore we have adopted a definition
of exterior derivative whereby we achieve this, and the proof of Stokes” Theorem
itself is then presented as a direct generalization of the proof of the rudimentary
form mentioned previously. The amount of multilinear algebra required for this
has been reduced to a minimum. In particular, the general differential k-form is
introduced by means of determinants instead of exterior multiplication of forms of
fower order, which usually requires a laborious definition.

Exercises. Quite a few of the exercises are used to develop secondary but interest-
ing themes omitted from the main course of lectures for reasons of time, but which
often form the transition to more advanced theories. In many cases, exercises are
strung together as projects which, step by easy step, lead the reader to important
results. In order to set forth the interdependencies that inevitably arise, we begin an
exercise by listing the other ones which (in total or in part only) are prerequisites as
well as those exercises that use results from the one under discussion. The reader
should not feel obliged to completely cover the preliminaries before setting out to
work on subsequent exercises; quite often, only some terminology or minor results
are required.
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Notational conventions. Our notation is fairly standard, yet we mention the fol-
lowing conventions. Although it will often be convenient to write column vectors as
row vectors, the reader should remember that all vectors are in fact column vectors,
unless specified otherwise. Mappings always have precisely defined domains and
images, thus f : dom(f) — im(f), but if we are unable, or do not wish, to specify
the domain we write f : R" D— R’ for a mapping that is well-defined on some
subset of R” and takes values in R”. We write Ny for {0} UN, N, for N U {oo},
and R, for {x € R| x > 0). The open interval {x € R [a < x < b}inRis
denoted by ]a, b[ and not by (a, b), in order to avoid confusion with the element
(a,b) € R%.

Making the notation consistent and transparent is difficult; in particular, every
way of designating partial derivatives has its flaws. Whenever possible, we write
D; f for the j-th column in a matrix representation of the total derivative Df of a
mapping f : R" — R”. This leads to expressions like D; f; instead of Jacobi’s
classical g{’—, etc. The convention just mentioned has not been applied dogmatically;
in the case of special coordinate systems like spherical coordinates, Jacobi’s notation
is the one of preference. As a further complication, D; is used by many authors,
especially in Fourier theory, for the momentum operator #_I%

We use the following dictionary of symbols to indicate the ends of various items:

J  Proof
O  Definition
Y¢ Example
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Chapter 6

Integration

In this chapter we extend to R" the theory of the Riemann integral from the calculus
in one real variable. Principal results are a reduction of n-dimensional integration
to successive one-dimensional integrations, and the Change of Variables Theorem.
For this fundamental theorem we give three proofs: one in the main text and two
in the appendix to this chapter. Important technical tools are the theorems from
Chapter 3 and partitions of unity over compact sets. As applications we treat
Fourier transformation, i.e. the decomposition of arbitrary functions into periodic
ones; and dominated convergence, being a sufficient condition for the interchange
of limits and integration.

6.1 Rectangles

Definition 6.1.1. An n-dimensional rectangle B, parallel to the coordinate axes, is
a subset of R" of the form

B={xeR"|a;<x; <b; (1=j=<m} (6.1)

where it is assumed that a;, b; € Rand a; < bj, for 1 < j < n, compare with
- Definition 1.8.18.
The n-dimensional volume of B, notation vol,(B), is defined as

vol,(B) = [] b, —ap.

1<j<n

Note that vol, (B) = 0 if there exists a j with a; = bj, that is, if B is contained in
an (n — [)-dimensional hyperplane in R", of the form {x e R" | x; =a; }.

423



424 Chapter 6. Integration

A partition of a rectangle B is a finite collection 8 = { B; | i € I } (here [ is
called the index set of B) of n-dimensional rectangles B; such that

B=|JB: BNB;j=# or vol(B,NB)=0 if i#]
iel
(6.2)
Let B and B’ be partitions of a rectangle B, then B’ is said to be a refinement
of B if for every B; € B the BI’- € B’ with B;- C B, form a partition of B;. O

Proposition 6.1.2. Assume { B; | i € I} is apartition of a rectangle B C R". Then

vol; (B) = )~ vol,(By).

iel

___________________________

____________________

________________

.........

D S

[Mustration for the proof of Proposition 6.1.2

Proof. We first prove two auxiliary results.
(i). Assume B asin (6.1); and for 1 < j < n, lett; + |aj,b; ] be arbitrary.
Consider

B ={xeR"|aj<x;<tj.anda; <xi <b. fork # j},
B"={xeR"|tj<x; <bj, anday < x; < by, fork # j}.
Because b; —a; = (b; —1;) + (t; — a;), it follows straight away that vol,(B) =
vol,(B’) + vol,(B").

(ii). Assume next that for every 1 < j < n the segment [a;, b; ] is subdivided by
the intermediate points

_ L0 WY _ g
aj=t; <<t =bj.

(6.3)
Then we have, for every n-tuple

a=(e(l),...,a(n) e N" where 1 < a(j) < N(j), 6.4)



