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Introduction

Though the natural world is an interconnected whole, our models usually
treat small pieces of that whole as if they were isolated from everything else.
For instance, in an elementary physics class, we are used to conservation
of energy and momentum for isolated systems. Isolation can be more than
just physical: we are used to the notion of separation between time and/or
spatial scales. The flow around a body inherits a characteristic length from
the body itself. At a typically much smaller characteristic distance from the
body’s surface, the flow is modified strongly by the action of viscous stresses.
This is of course the archetypal example of a boundary layer. In physical
systems exhibiting oscillations, the properties of the oscillation sometimes
change in a characteristic time much longer than the local period, and this
slow cumulative change is called modulation of the oscillations.

The mathematical models of phenomena with widely separated scales
are often singularly perturbed, meaning that the solution of the equations
doesn’t converge uniformly as the ratio of scales becomes large or small.
This is the conceptual frame of singular perturbation theory. As a practice
or art, singular perturbation theory is a body of analysis that exploits the
separation of scales in phenomena: First, describe small and large scale
happenings as if isolated or separate from each other. Then join them so
they talk to each other, and larger meanings emerge. This characterization
of singular perturbation theory begs a question: What happens if there is
a hierarchy of many scales with no clear large and small separation? Like
turbulence. Maybe this larger sphere of problems is the future of the subject.
In any case, it is beyond the pay grade of this book. So here is what this
book is going to do:
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xii Introduction

First and generally, like the preceding text by the author, Training Man-
ual on Transport and Fluids, there is a main text of basic material and a
subtext of worked problems that go deeper and present engaging examples.
Think of the main text as the trunk of the tree and the problems as the
branches (with many bifurcations, as you will see).

Chapter 1 is a traditional introduction based on simple, preferably ex-
actly solvable, examples of singular perturbation. We gain first impressions
of scaling, dominant balances, distinguished limits, boundary layers, match-
ing, and modulated oscillations.

All perturbation analysis is approximation, and Chapter 2 spells out
the specific sense of asymptotic approximation in which “the error is much
smaller than the smallest term we keep,” as the perturbation parameter
goes to zero. There is a brief overview of a very traditional subject: the
asymptotic expansion of integrals. The long-time analysis of the Fourier
integrals representing wavefields is a jumping-off point for a mini-course on
WKB at the end of the chapter.

Chapter 3 is a traditional presentation of matched asymptotic expansions
for ODE boundary value problems with localized small scale structure, such
as boundary layers, internal layers, derivative layers, etc. The discussion of
higher-order matching and how the overlap domain shrinks as the order of
matching increases is based on the intention to make it the simplest possible,
but no simpler.

Chapter 4 on moving internal layers introduces Chapman—Enskog asymp-
totics: There are dynamical systems in which a relatively small set of state
variables dominates the solution. If you know the evolutions of these domi-
nant variables, you know the evolution of the whole system. The flow vector
field of the dominant variables is to be determined as an asymptotic expan-
sion. Also, we construct asymptotic expansions of the other non-dominant
variables, taking the dominant variables as given. The solvability conditions
encountered in constructing the latter expansions dictate, order by order,
the flow vector field of the dominant variables. In the first Chapter 4 ex-
ample, the dominant variable is the centerline curve of the internal layer of
a director field in two dimensions, and the asymptotic construction of the
internal layer solution about this curve dictates, order by order, the dynam-
ics of the centerline curve. At leading order, we get the familiar motion by
curvature. The remaining content of Chapter 4 on projected Lagrangians is
easiest to discuss in the context of Chapter 6.

Chapter 5 is a (nearly) traditional presentation of the Prandtl bound-
ary layer theory for the Navier-Stokes equations and of the solutions of the
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boundary layer equations that can be constructed because of scaling symme-
try. The most original part of this chapter is the last problem (Problem 5.5)
on a spiral diffusion layer in a vortex flow.

Chapter 6 is the first attempt at analysis of modulated oscillations. It
starts with an expansive repertoire of elementary examples (Problems 6.1-
6.6). Even though their methodology is extremely simple (elementary exact
solutions, WKB, perturbed ODE eigenvalue problem), we can present en-
gaging examples, such as passage through resonance. The mathematical
technique in the body of this chapter is the method of two scales. The lit-
erature often refers to the multiple scale method, because we might want
to consider more than two characteristic times explicitly. It is this author’s
belief that the method of two scales is an introductory method, to be even-
tually superseded by averaging and its big brothers, which we introduce in
Chapter 7. Once you are in the realm of these methods, the need for more
than two characteristic times is moot. In Chapter 6, we’ll see how the two
scale analysis of nonlinear oscillations leads to the insight that the action in
the sense of classical mechanics is the proper variable of modulation theory.
In this sense, the two scale analysis is a precursor to the methods related to
averaging in Chapter 7. These methods start with action as a state variable
right away. The discovery of action by the method of two scales derives from
Whitham’s analysis of nonlinear waves, so the Whitham modulation theory
of waves is a core subject of Chapter 6. Finally, there is Whitham’s pack-
aging of modulation theory for nonlinear variational equations by means of
the averaged Lagrangian. Our main use of the averaged Lagrangian happens
in two places: here in Chapter 6, we apply it to the homogenization theory
of the effective diffusion tensor in a periodic medium. In the last problem
(Problem 6.15), it is shown that the Lagrangian flavor of homogenization
used in this example is equivalent to the traditional direct analysis. The
projected Lagrangian in Chapter 4 is essentially averaging the original full
Lagrangian over the internal layer. It is just like the Whitham analysis,
except that the wave has only one crest.

Chapter 7 is about modulation theory of a perturbed Hamiltonian dy-
namics with one degree of freedom, based on perturbation of its action-angle
variables. This is a special case of the more general class of problems treated
by the averaging method. Our focus is a bit narrow in the interest of staying
clear and simple in a textbook. The essential idea: When a perturbation
is applied to the original Hamiltonian dynamics, the action variable tends
to undergo large, slow drifts, with a small-amplitude, rapid oscillation su-
perpositioned on top of it. The idea in this chapter is to perform a near-
identity transformation of the original action-angle variables, so the new
action has no rapid, oscillatory component. In a process very reminiscent of
the Chapman-Enskog method of Chapter 4, the governing ODE of the new
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action and the small oscillatory correctors in the near-identity transforma-
tion have intertwined asymptotic expansions. If we restrict the analysis to
leading order, the resulting modulation theory is completely equivalent to
the well-known averaging method. As we proceed to higher order, we make
ever more refined corrections to the dynamics of the new action, and it is
hoped that the characteristic time of validity of the asymptotics is increased.
This is why this book has not pursued multiple scale theory with more than
two characteristic times. The chapter closes with an analysis of dissipative
perturbations of the Kepler problem. Those of you who have donated a
coin to the gravity well exhibit in a planetarium will appreciate the result
of this analysis: you’ll know why the orbit of your dime is almost circular
just before it spirals into the “black hole” of the donation box.

Chapter 8 introduces into the perturbed Hamiltonian dynamics a fea-
ture that is expressly avoided in Chapter 7, and that is explicit periodic time
dependence of the perturbation. Why is that a big deal? If the frequency of
the unperturbed Hamiltonian orbit is sufficiently close to a rational multiple
of the perturbation frequency, formal asymptotics as in Chapter 7 predicts
resonance. A sure sign of resonance is deviations from the unperturbed or-
bit that don’t scale in direct proportion to the perturbation. They are much
larger, and their characteristic time is much longer than the perturbation
frequency. The perplexing issue is that the rational numbers are dense, so
the ability of simple asymptotics to isolate one resonance at a time seems
dubious. Chapter 8 carries out the obvious program: Just do the simple res-
onance asymptotics anyway, and compare with direct numerical solutions of
the full ODE. In the elementary cases examined, the asymptotics displays
clear robustness within the formal order of approximation and over charac-
teristic times for which the asymptotics is valid. At the end of Chapter 8 we
“look through a glass darkly” by means of a simple formal estimate: The
resonance associated with a given rational frequency ratio is felt in a narrow
band of the phase plane about a given unperturbed orbit. As the strength of
the perturbation decreases, so does the bandwidth. If the resonance associ-
ated with the rational number M /N wants to be in the bandwidth of another
resonance, say M*/N* M and N generally go to infinity as the difference
from M*/N* goes to zero. If M and N are large, the formal perturbation
theory shows that the bandwidth and strength of the M /N resonance goes
to zero. In summary, when M /N is close enough so its resonance is in the
bandwidth of the M*/N* resonance, the latter resonance can’t resolve it.
The great and perplexing questions about resonance at the level of rigorous
analysis remain, and no claim is made here in relation to them.
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Chapter 1

What is a singular
perturbation?

Mathematical equations arising from physical sciences contain parameters.
Perturbation theory examines parameter dependence of solutions locally.
To present basic ideas simply, consider a one-parameter family of functions:
For each z in a set R and real parameter € in a punctured neighborhood of
€ = 0, the values of the functions f(z,€) are in a metric space. The range is
a metric space so that convergence of functions f as € — 0 can be discussed.
f(z,€) is to be regarded as a solution of some set of equations containing e
as a parameter.

The equations are called a regularly perturbed problem if all solutions
f(z,€) converge uniformly on R as e — 0. If there is a solution which does
not converge uniformly, the problem is called singularly perturbed. Notice
that the category, regular or singular, is formulated in terms of the solutions
and not the equations.

This abstract definition of singular perturbation is very broad. But
practical problems draw attention to a few dominant categories of singular
behavior. What follows is a mini-survey of examples.

Prototypical examples.
Singularly perturbed polynomial equations

For € > 0, the polynomial equation
(1.1) g — 27— 1=

has 8 complex roots. In the language of the preceding general discussion,
the set R is the integers 1,2,...,8 labeling the roots, and the metric space

1



2 1. What is a singular perturbation?

of the roots z = f(k,€), k = 1,...,8, is the complex numbers. Figure 1.1
displays numerical approximations of the 8 roots for the sequence of €’s,
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Figure 1.1. The roots (dots) and the approximated roots (circles)

e=2",n=1,...,10. Three of the roots appear to be converging to the
cube roots of —1,

(—1)% — ei%, eiﬂ', ei%r',
as € — 0. This is easy to see: Setting ¢ = 0 in (1.1) gives the reduced
equation

(1.2) B 4+1=0.

The remaining 5 roots are diverging: Figure 1.2 is a log-log plot of the
positive, real root as a function of e. It appears that the diverging roots scale
1

with € like e 5. If the polynomial equation (1.1) were regularly perturbed,
all 8 roots would converge as ¢ — 0. Hence, it is singularly perturbed.

If it is assumed that the roots of (1.1) exhibit algebraic scalings with e
as € — 0T, direct constructive approximation is easy. Roots that scale like
€ P as € = 0 can be represented as

(1.3) z(e) =€ PZ(e)



