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Abstract

Automatism and high code coverage are the core challenges in testing distributed
systems in their early development phase. Ideally, the testing process should cope
with a large input space, non-determinism, concurrency, and heterogeneous oper-
ating environments to effectively explore the behavior of unmodified software. In
practice, however, missing tool support imposes significant manual effort to perform
high-coverage and integrated testing. One of the main testing challenges is to detect
bugs that occur due to unexpected inputs or non-deterministic events such as node
reboots or packet duplicates, to name a few. Often, these events have the potential
to drive distributed systems into corner case situations, exhibiting bugs that are
hard to detect using established testing and debugging techniques.

Recent advances in symbolic execution have proposed a number of effective solu-
tions to automatically achieve high code coverage and detect bugs during testing of
sequential, non-distributed programs. This attractive testing technique of unmodi-
fied code assists developers with concrete inputs to analyze distinct program paths.
Being able to handle complex systems’ software, these approaches only consider
sequential programs and not their concurrent and distributed execution.

In this thesis, we present symbolic distributed execution (SDE)—a novel approach
enabling symbolic execution of distributed systems. The main contribution of our
work is three-fold. First, we generalize the problem space of SDE and develop
methods to enhance symbolic execution for distributed software analysis. Second,
we significantly optimize the basic execution model of SDE by eliminating redundant
execution paths. The key idea is to benefit from the nodes’ local communication
and, thus, to minimize the number of states that represent a distributed execution.
Third, we demonstrate the practical applicability of SDE with our tools KleeNet and
SymNet, which are implemented as modular extensions of two popular symbolic
execution frameworks.

With KleeNet, we realize an automated testing environment for self-contained dis-
tributed systems that generates test cases at high code coverage, including low-
probability corner case situations before deployment. As a case study, we apply
KleeNet to the Contiki operating system and show its effectiveness by detecting
four insidious bugs in the uIP protocol stack. One of these bugs is critical and
lead to the refusal of further TCP connections. Our second tool called SymNet pro-
vides a testing environment for unmodified software running in virtual machines that
communicate in a real network setup. We combine time synchronization of virtual
machines and constraint synchronization to explore distinct distributed execution
paths. The application of our SymNet prototype to a HIP protocol implementation
exposed a design bug and thereby demonstrates SymNet's effectiveness in antomated
testing of complex communication software.



Kurzfassung

Automatismus und hohe Codeabdeckung sind die wesentlichen Herausforderungen
beim Testen von verteilten Systemen in ihrer frithen Entwicklungsphase. Idealer-
weise sollte der Testprozess sowohl alle méglichen Eingaben, als auch Nichtdeter-
minismus, Nebenldufigkeit und heterogene Einsatzumgebungen der Software beriick-
sichtigen. In der Praxis fithren jedoch fehlende Werkzeuge und Methodiken zu ho-
hem Zeit- und Kostenaufwand beim Testen. Insbesondere ist das Auffinden von
Softwarefehlern schwierig, welche aufgrund unerwarteter Eingaben oder nichtdeter-
ministischer Ereignisse (z.B. Neustart, Paketduplikate) auftreten. Diese kritischen
Fehler fithren verteilte Systeme oft zu Grenzfillen ihrer Ausfithrung und sind mit
den etablierten Testverfahren schwer auffindbar.

Symbolische Ausfiihrung ist bereits seit einigen Jahren eine sehr effektive Meth-
ode, um méoglichst alle Ausfiihrungspfade eines gegebenen Programms dynamisch
abzuschreiten. Damit erreicht die Methode eine hohe Codeabdeckung und generiert
iiberdies automatisch Testfille, welche zu den einzelnen Programmpfaden fiihren.
Aufgrund der Komplexitit verteilter Systeme wurde die symbolische Ausfiihrung
bislang nur fiir sequentielle Programme eingesetzt.

Diese Arbeit stellt die Idee der symbolisch verteilten Ausfihrung vor, die symbol-
ische Ausfithrung von verteilten Systemen erméglicht. Das entwickelte Konzept
besteht in der gleichzeitigen Ausfithrung mehrerer miteinander kommunizierender
Softwareinstanzen und der Beriicksichtigung der dabei moglichen Interaktionen zwis-
chen diesen Systemen. Aus erkannten Fehlerfillen kénnen automatisch Testfille
fiir die verteilte Ausfithrung eines Systems abgeleitet werden. Hierdurch lassen
sich frithzeitig unvorhergesehene Grenzfille der verteilten Ausfithrung erkennen und
gezielt analysieren. Ein wesentlicher Beitrag hierbei sind die entwickelten Algo-
rithmen zur Erkennung und Vermeidung redundanter Zustinde, um eine effiziente
Ausfithrung von kommunizierenden Systeme zu erreichen.

Das erarbeitete Konzept zur symbolischen Ausfithrung verteilter Systeme wurde
in Form des Werkzengs KleeNet realisiert und erfolgreich auf drahtlose Sensor-
netze angewendet. Bei den Tests des verbreiteten pIP-Protokollstapels im Contiki-
Betriebssytem hat KleeNet kritische Fehler identifiziert, die jahrelang zu Proble-
men gefithrt haben, deren Ursache jedoch unentdeckt blieb. Ein groBler Vorteil von
KleeNet ist die Moglichkeit des transparenten Testens, ohne die Software vorher mod-
ifizieren zu miissen. Die Flexibilitiit des Ansatzes wurde mit dem zweiten Werkzeug
SymNet demonstriert, welches iiber ein Netzwerk kommunizierende virtuelle Maschi-
nen symbolisch ausfithrt. Hierfiir werden die zu testenden Systeme zeitsynchro-
nisiert, withrend symbolische Daten iiber das Netzwerk serialisiert iibertragen wer-
den. Die Anwendung des SymNet-Prototyps auf die Linux-Implementierung des
HIP-Protokolls hat automatisch einen wichtigen Designfehler entdeckt.
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Introduction

Implementing and testing new communication protocols and distributed applications
is well recognized to be a difficult task for software developers. Ambiguous protocol
definitions, distributed execution, node and network level non-determinism make
the testing process very labor-intensive. In addition, achieving high code coverage,
especially in testing for exceptions, is hard, often resulting in insufficient testing.

One typical testing issue in a distributed setting is low test coverage of concurrent
applications [BFM*05]. Consequently, even small changes in the test setup may
reveal new problems with the software. Moreover, critical bugs (e.g., node crash
or wrong protocol state) appear only after prolonged operations, making it diffi-
cult to explain and narrow down their root causes since the information about the
distributed state is lost [KAJVO7].

A further challenge remains: Testing the interoperability with other, possibly even
proprietary, implementations of the system. For example, a strong evidence of miss-
ing tool support is notable in the Internet Engineering Task Force (IETF) standard-
ization community. To become an Internet Standard, each protocol draft requires at
least two independent and interoperable implementations [Bra96]. Consequently, the
developers spend significant amounts of manual effort and time during conformance
testing sessions after each update of the draft. Nonetheless, even these tests do not
provide an assurance that the implementations fully conform to (often ambiguous)
draft details and manifest the same, interoperable behavior.

In the Wireless Sensor Network (WSN) community, reliable software is crucial be-
cause nodes are envisioned to be deployed in the absence of permanent network in-
frastructure and in environments with limited or no human accessibility [SPMC04,
TPS*05]. Operating complex distributed protocols over lossy links and potentially
unreliable nodes, WSNs demand extensive testing and debugging before deployment.
After deployment, bugs are difficult to detect, costly to fix, and can potentially cause
an operational outage.

For example, a recent WSN deployment in the Swiss Alps [BISV08] experienced
sporadic packet loss on all GSM nodes simultaneously. This was caused by a bug in
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the GPRS drivers of the WSN sink node used for collecting measurements. The bug
prevented it from reconnecting to the cellular network after connection loss. It did
not occur during testing before deployment as the test site had a very good GSM
connectivity. Similarly, a bug in the flash driver of Deluge [HC04] caused a three-day
network-outage during a deployment on an active volcano in Ecuador [WALJ*06]:
Due to this bug, rebooting after remote reprogramming failed, breaking the net-
work for three days until each node was manually reprogrammed on the volcano.
Overall, examples of bugs detected during deployments [BISV08, LBV06, TPS*05,
WALJ*06] indicate that bugs are often revealed in corner cases, that were not tested
sufficiently before deployment.

Motivated by the observed and widely accepted necessity of rigorous pre-deployment
testing, this thesis strives to develop efficient and effective testing methods for un-
modified communication software. In the following section. we begin with the fol-
lowing question: Which properties of distributed systems make the testing process
so difficult?

1.1 Challenges in Distributed Systems Testing

In contrast to programs that take an initial input and calculate the result solely
based on that input, distributed systems are reactive systems. These systems run
continiously and react on external events that are repeatedly received from the
surrounding environment. Together with the distributed nature, distributed system
implementations have the following main properties:

Distributed Execution: All asynchronous execution entities, i.e., programs in a
network, may run concurrently. The distributed execution is driven and coor-
dinated by both user input and communication among the nodes in a network.

Unreliable Operating Environments: The data communication medium is un-
reliable, being source of a number of non-deterministic failures such as data
loss and corruption. Additionally, the hardware of a program instance is un-
reliable as well. Coonsequently, nodes in a network can experience reboots and
complete outages.

Heterogeneous Implementations: The prevalent distributed systems are imple-
mented in a variety of programming languages and run on different platforms/
Operating Systems (0Ss). Hence, the ever-growing number of complexity of
heterogeneous devices and networks puts high demands on interoperability.

From the testing point of view, the execution of a distributed system is triggered
by numerous inputs that are categorized in Table 1.1. The boundaries between
the selected categories are not strict since they may influence each other (e.g., time
uncertainty and network inputs).

Initially, each software instance in a network is set up separately, potentially leading
to diverging settings and thereof resulting behavior. After bootstrapping, the dis-
tributed execution is driven, for example, by preconfigured applications (e.g., data
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Input class Short Description

Settings Settings of each software instance in a network

User inputs Events with associated data, triggered by users

Network inputs | Data packets from peers in a network

Environment 0OS, hardware, and environmental events

Time uncertainty | The main source of different temporal behavior

Table 1.1 An overview of the main influence factors of a distributed system'’s execution.

collection from the environment) or active user participation (e.g., content request).
The coordination among the nodes boils down to the exchange and processing of
data packets that actively steer the control flow of applications (e.g., protocol state
machine transitions). At the same time, non-deterministic environmental events
such as hardware failures or packet loss can occur at any time and drive the dis-
tributed system execution into further, potentially unforeseen corner cases. Finally,
time uncertainty with respect to all latter described events and their associated in-
puts leads to a potentially infinite number of event interleavings. Handling this input
complexity for real-world, complex software implementations remains to be an open
research and engineering problem.

In this thesis, we focus on user/network inputs and non-deterministic environmental
events to rigorously analyze implementations of distributed systems. At the same
time, we address the challenge of automated interoperability testing with the goal of
specification-compliant and interoperable implementations. After defining the core
challenges, we will now elaborate on the selected problem space in more detail.

1.2 Problem Statement

Our considered problem scope addresses the challenge of efficient test case generation
for unmodified distributed systems running arbitrary implementations. From this
challenge, we derive the following three problem statements.

Lack of High Input Coverage: Complex distributed execution, node and net-
work level non-determinism make prevalent testing techniques suffer from poor
execution path coverage. For example, simulation and testbeds analyze merely
single execution runs or slight modifications of them. Hereby, achieving high
data input coverage is labor intensive, resulting in often insufficient manual
testing. The latter challenge is crucial for corner case analysis since distributed
systems’ execution is primarily data-flow driven.

State Explosion: Naively exercising the whole input space for typical distributed
systems inevitably leads to exponential state growth and is not feasible. For
example, exploring each value of a 20 byte long network packet would require
2160 different runs. Therefore, more sophisticated methods are necessary to
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Figure 1.1 The key idea of our testing approach. The initial execution path (A broad-
casts a packet to B) splits after packet reception at node B into multiple execution paths,
four of which are shown here. Following these execution paths, SDE provides a high
program coverage including non-deterministic failures such as reboots and packet losses.

consider only those inputs that lead to different system behavior. Most im-
portant, any proposed solution should scale with growing network sizes and be
applicable to real-world, complex communication software.

Interoperability Issues: Interoperability testing of distributed software such as
communication protocols involves different, even closed-sourced implemen-
tations. Ideally, this process should cope with a large input space, non-
determinism, concurrency, and heterogeneous operating environments to effec-
tively explore the diverging execution paths. In practice, however, the missing
tool support imposes a significant amount of manual effort to perform inte-
grated conformance and interoperability testing of protocol implementations.
These manual integration tests usually come late and may reveal bugs and
misinterpretations of the protocol specification [SKJW12].

The presented problems raise a number of research and engineering challenges. In
the following section, we first highlight the key ideas of our approach, called Symbolic
Distributed Evecution (SDE), using a simple example scenario. Second, we define
the main research questions of this thesis.

1.3 Basic Concept and Research Challenges

Consider a scenario with three communicating nodes, successively placed such that
each of them is in the transmission range of its one-hop neighbors (Case 1 in Fig-
ure 1.1). Assume that node A initiates the communication by broadcasting a data
packet to its neighbor B. Upon receiving the packet, node B first determines the
validity of the packet, i.e., it calculates the header checksum. As the packet can
contain arbitrary data, the validation branches into two execution paths, namely
"packet invalid” and “packet valid”. Hence, SDE follows both program execution
paths at node B separately. In case of an invalid packet, B discards it (see Case 2 in
Figure 1.1). While manually testing the correct handling of arbitrary program input
is time-consuming and challenging, our approach explores such distributed execution
paths automatically.

In the case of a valid packet, B next checks the destination of the packet. Here, B
again splits the execution path to "packet to forward” and "local delivery”. Case 3 in



