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Preface

The title of this book has been chosen to convey to the reader the
general field with which we shall be concerned. But this is today too
large a field to be compressed within the covers of a monograph, and
we intend to restrict the subject-matter to a few related topics
which seem to us to have a special interest not only for the theoreti-
cal physicist, but for the physical chemist, the applied mathe-
matician, and perhaps also the engineer. More than half the book
will deal with what is generally known as the Ising problem. We
wish to combat a prevalent idea that this topic is no more than a
mathematician’s plaything. It is true that the original papers
demand a degree of mathematical competence which even today is
quite rare ; butsimplifications in the past decade have, we feel, finally
reduced the problem to such proportions as can be appreciated, with
a certain amount of effort, by a much wider scientific community.
Also, although the exact solutions of the Ising problem which we
wish to present apply only to rather highly idealized physical
situations, we do believe that they give an important insight on a
wide range of actual physical phenomena.

The mechanism of phase transitions is at the same time one of
the most fascinating and one of the least understood of all physical
problems. Such transitions are often accompanied by dramatic
changes in physical and chemical characteristics, seemingly dis-
proportionate to the subtle structural metamorphoses which occur
at the molecular level. But it is only through a careful study of the
molecular phenomena that the essential nature of the phase tran-
sitions is revealed. Invariably a change of order is involved. All
states of matter, even the gaseous state, have some form of order.
Sometimes, as in the condensation of a gas, or in the change of
crystalline form of a solid, only the kind of short- or long-range
order is affected. But, on the whole, the changes from long-range
order to shomt-range order, commonly known as order—disorder
transitions, are the most interesting. The disappearance of mag-
netism from ferromagnets at the Curie point is accompanied by a
transition of this type; sois the discontinuity in the thermodynamic
properties for certain proportional mixtures of binary alloys. Such
dramatic effects are, however, only highlights of the physical
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phenomena which depend on molecular association, and the study
of this association is of considerable interest in its own right.

These are the considerations which are most likely to attract the
attention of the physicist or chemist to the topics which we shall
discuss. We think, however, that everyone who proceeds far enough
will appreciate the fascination that the Ising model has held for the
mathematician, and also admire what Professor Prigogine, in a
letter to the authors, has called ‘some of the most beautiful results
of statistical mechanics’. These results, due in a large measure to
Onsager, certainly have an intrinsic interest quite apart from the
illumination they impart to physical problems.

In our choice of topics we have reluctantly excluded from detailed
discussion a large amount of valuable work devoted to the develop-
ment of approximate solutions of the Ising and related problems.
This decision was, of course, influenced by our own interest in the
exact solutions. But we have also taken into consideration the fact
that the results passed over in this way are sufficiently discussed in
several other books dealing with statistical mechanics and its
applications, whereas the exact solutions are hardly dealt with in
any systematic way, except in one or two review articles which are
now obsolescent. Quite apart from this, the approximate methods
to which we refer only briefly, if at all, may give an adequate account
of the ordered states, or the disordered states, but provide little
detailed information about the nature or location of the transitions
between them, which have become the main focus of interest in
recent years. It is, of course, disappointing that the exact solutions
obtained so far are either formal or for two-dimensional models,
and that many realistic problems are still without analytical
solutions. But even the formal solutions are not without interest;
and it is perhaps one of the reasons for the sustained appeal of this
field of research that it offers such a wide variety of unsolved
problems.

In the arrangement of our material, we have tried to consider the
needs of the reader who has little previous knowledge of the liter-
ature and no specialized mathematical equipment, as well as the
less exacting requirements of our more sophisticated colleagues.
We are anxious that there should be nothing to prevent anyone
with the time and inclination from reading to the end. The first two
chapters are designed to provide the necessary background to-
gether with a superficial view of the whole field. The third chapter
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considers a particular problem, the Ising problem for a square
lattice, in sufficient detail to illustrate the principal method which
we intend touse. Thisis a method which we have recently developed,
and is in our opinion much simpler than the original method found
by Onsager for the solution of the same problem. It is not capable of
solving every problem, but is able to achieve all the results which
have been obtained so far by the other methods. Some idea of the
limitations of the method, as well as its full generality, is given in
the systematic development of the general theory in chapter 4.
Chapter 5 is devoted to the solution of a variety of special problems
by the same method, and chapter 6 to an account of some of the
alternative methods which are available. Finally, in chapter 7, we
have not been able to resist the discussion of a few of the problems
for which no analytical solution has yet been obtained; we think
that this may help to discourage in readers new to these problems
the extremes of both optimism and pessimism which have afflicted
those who have examined them superficially or with fruitless
Iabour in the past.

One difficulty in writing a work of this kind is to provide enough
mathematical detail to allow those with only a modest mathe-
matical equipment to follow our argument, without burdening the
text with a great deal of tedious calculation. We have tried to
overcome this difficulty by providing, as a last chapter, a series of
mathematical appendices which summarize the basic techniques
and should eliminate the need to consult specialized mathematical
texts. We hope we have thereby made this monograph, on an
admittedly difficult subject, both intelligible and self-contained.

References are collected at the end of the book and are indicated
in the text by mention of the date of publication. They do not
represent a complete guide to the literature, even of the restricted
topics which we discuss in some detail. On the other hand, we have
tried to include among our references, in addition to the more
important papers, a selection of review articles which provide a
more detailed bibliography.

H. S. GREEN
C. A. Hurst
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CHAPTER 1

Introduction

1.1. Phase Transitions in Physics and Chemistry

In macroscopic physics and chemistry we are acquainted with a
rather wide variety of interesting and sometimes spectacular pheno-
mena which can be described as changes of phase. Of these, the most
prominent are those which occur in the melting of crystals and the
condensation of gases, and which therefore affect nearly every
substance. But there are also phase transitions which are peculiar
to particular substances, some of which only become apparent on
detailed investigation of their thermodynamical and mechanical
properties. To list only a few of these, we might include the tran-
sitions which affect ferromagnetic substances at their Curie point,
anti-ferromagnetic substances at their Néel point, binary alloys at
their ‘ Curie point of order’, and liquid helium at its lambda-point.
There is little that a purely macroscopic theory can do to provide
an understanding of such phenomena; they can be fitted into the
general framework of classical mechanics and thermodynamics, but
it is clear that a fundamental explanation of their raison d'étre
must be sought at a very different level. It is only in the domain of
atomic or molecular physics that the underlying mechanism of
phase transitions can be exposed and analysed.

It would be reasonable to expect that the various instances of
phase transition should admit of a common explanation. At the
macroscopic level, they show many similarities: almost without
exception, the transitions are accompanied by anomalies in the
specific heat or latent heat, elastic constants, and electrical and
thermal conductivity, changes of density or compressibility, and
in the magnetic properties of the substance. But in spite of these
similarities, it is not easy to find a unifying principle at the molecular

‘level, even when the mechanism respénsible for the various tran-
sitions has been revealed. It has become clear that in every instance
the change of phase is correlated with a change in the atomic or
molecular structure; but this is no more than the change in physical
properties would allow us to predict. The actual nature of the

' 1
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structural change appears to take widely different forms. It is
found, for instance, that the condensation of a gas to form a liquid
isaccompanied by a change of molecular structure whereby isolated
molecules and small clusters of molecules moving freely and inde-
pendently in the gas are brought within one another’s sphere of
interaction, so that there is no longer any independent motion. In
the process of freezing, on the other hand, the change is one from
motion of the molecules about continually changing and almost
unrelated positions to vibration about a fixed set of lattice sites. As
a further example, in the transition of a ferromagnetic substance
through the Curie point, the change is in the fraction of the atomic
spins which are oriented in a particular direction. These three
examples might not lead us to suspect the presence of any common
feature other than a change of structure in the transitions involved.
Yet, as our further considerations will show, there is quite a simple
model which is able to represent all three types of transition in a
qualitatively faithful way. There is, after all, a common principle,
the exposition of which forms the central theme of this book.
- In our search for a common feature in the different phase tran-
sitions we have mentioned, the first thing which might be noticed
is a certain resemblance between the processes of melting, and loss
of magnetization at the Curie point. The crystalline structure of a
solid, according to the picture we have presented, is an ordered
structure. By this, we mean to say that it haslong-range order, that
there is a certain degree of correlation between positions of different
atoms which is almost independent of their distance apart. This is
an elementary consequence of the fact that an atom is more likely
to be found in proximity to one of the regularly spaced lattice sites
. than elsewhere, The liquid and gaseous states are not ordered in
this sense, though they have a varying amount of short-range
order which can be revealed by X-ray diffraction techniques. The
change of phase in melting may therefore be called an order-disorder
transition, meaning that it involves the disappearance of some form
of long-range order. The loss of magnetization by a ferromagnetic
metal at the Curie point is also an order—disorder transition, though
the type of order involved is somewhat different. Below the Curie
point, the atomic spins have a preference for a particular orienta-
tion, so that there is a correlation between the spins of different
atoms which is almost independent of their spatial separation.
- Thus the spins have long-range order, which disappears above the
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Curie point. In this respect, there is a definite similarity between the
two phase transitions. But, surprisingly enough, this is #ot the
essential feature common to these processes. If it were, we should
have to exclude condensation phenomena from consideration, since
neither the liquid nor the gas has an ordered structure of the type
we have been discussing. An order—disorder transition is certainly
involved in the so-called first-order transitions of melting and con-
densation, but it has a more subtle character than that which is
involved in the loss of ferromagnetism.

(a) First- and Second-Order Transttions

Since we have been obliged to introduce the difference between
first- and second-order transitions, we shall proceed to examine this
distinction in more detail. This classification of changes of phase,
which is due mainly to Ehrenfest (1933), can be made on the basis of
macroscopic thermodynamics.

We consider first a system consisting of molecules of the same
chemical type. Such a system is completely specified, from the
thermodynamical standpoint, by giving the thermodynamic poten-
tial per molecule, denoted by p, as a function of the hydrostatic
pressure p and the temperature T. (If N is the number of molecules,
Gibbs’ thermodynamic potentialis G = uN.) The molecular volume
is given by

V_
N 3’
and the internal energy per molecule is
U
N =p— T T P P'

The use of the thermodynamic potential is particularly suited to the
discussion of phase transitions in which the temperature and
pressure of both phases is the same, since the condition for the
equilibrium of the two phases (4 and B for example) is simply that
their thermodynamic potentials should be the same (u, = up). A
first-order transition is defined as one for which the first derivatives
dp/dp and op/oT have different values for the two phases, and thus
change discontinuously when the phase transition occurs. Thus there
will be a discontinuous change in the volume, and in the internal
energy, in phase transitions of the first order. There is no doubt
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that melting and condensation, and other changes of state are
transitions of this type.

Transitions of the second order were defined by Ehrenfest as
involving discontinuities in the second derivatives of the thermo-
dynamic potential, but not in the internal energy. Although the
distinction made in this way seems to be quite unambiguous,
difficulties often arise in its applications. From the experimental
standpoint, it is net easy to decide whether the rapid variation of a
thermodynamical variable in a small temperature range is the mani-
festation of an ideal discontinuity. From the theoretical side, it
turns out that singularities of the logarithmic type or involving
branch points frequently appear, which are apt to produce in-
finities rather than discontinuities in the derivatives of the thermo-
dynamic potential. If we agree to regard an infinity as a type of
discontinuity, however, the last difficulty is resolved.

Jaffray (1948) has reviewed the various types of transition which
may occur from both the theoretical and experimental point of
view. It appears that as a general rule, transitions associated with
magnetic phenomena are of the second order; although a small
discontinuity in the molecular volume of ferromagnetic substances
usually accompanies loss of magnetization, there is no evolution
of latent heat, such as one has in changes of state. The transition
in binary alloys, which is associated with the disappearance of
‘superstructure’, is of the same type.

It might seem, then, that there is an essential difference between
phase changes which involve a change of state, and those which do
not. However, it is more likely that the latter should be regarded as
limiting instances of the former. Thus the Curie point of a ferro-
magnet might very well be compared with the critical point of a
fluid, where the latent heat of condensation falls to zero. Likewise,
in an external magnetic field, there is a latent heat associated with
the transition of a ferromagnet. There is, therefore, a real basis for
the comparison of changes of phase.

(b) Co-operative Phenomena

The implications of what has been said so far are two-fold.
Firstly, the structural changes which are associated with changes of
phase are often, but not invariably, associated with the disappear-
ance of long-range order. Secondly, although changes of state
appear to be distinguished from other transitions by the order of
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the transition involved, this distinction is not an important cne
from our present point of view. There is still another question which
will have to be answered before we shall be able to discover the
relations between these apparently disconnected phenomena: that
is, why the transitions do not take place gradually, instead of
discontinuously, in nature. Macroscopic thermodynamics does not
offer the slightest clue to this mystery: it merely assures us that’
the discontinuous transition may occur if the thermodynamic
potential of the two states is the same. The molecular picture also
provides only a partial answer to the question. In the melting of a
crystal, we see the lattice structure gradually breaking up, owing
to the movement of atoms from their lattice sites. Ata temperature
just below the melting point, the number of atoms which regain
lattice sites balances the number which move into interstitial
positions;-at a slightly higher temperature, the balance is upset
and the lattice structure dissolves. But it might obviously happen
otherwise: the lattice structure might be increasingly deformed,
first locally, then on a broader scale, and finally throughout the
crystal so that the lattice is gradually obliterated. The actual melt-
ing appears more as a co-operative action of the whole molecular
assembly.

To make this point a little clearer, we might compare the melting
phenomenon with what happens when there is a change of govern-
ment in a democratic country, with two political parties of nearly
equal strength. A change of opinion on the part of a very small
minority of voters under these conditions is sufficient to precipitate
a change of government after an election and perhaps a radically
different policy. If the administration of the country were entrusted
to local authorities, still democratically elected, it would happen
quite differently!

An important aspect of phase transitions, therefore, is that they
involve co-operative phenomena. In a ferromagnetic material,
where the atomic spins move in unison, the co-operative activity is
very obvious; in a liquid, it is less obvious but still there. Having
observed that co-operative action is involved, our task is to explain
it; and, as our democratic electoral system is sufficient to show, the
statistics of individual preferences must provide the basis of any
correct explanation. We conclude, then, that our problem is essen-
tially a statistical one, and that combinatorial analysis is the tool
which will have to be used to obtain a solution. The principles of
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statistical mechanics, which will be explained briefly in the following
section, provide the framework of our investigation, and the devel-
opment of the appropriate combinatorial methods in chapters 83 and
4 will enable us to obtain resuits which throw the greatest light on
our problem.

(¢) Models and Reality

As we have already hinted, there is quite a simple model, the
Ising model, which reproduces in a qualitatively, if not quantita-
tively, faithful way the essential features of the phase transitions
we have been discussing. It would be easy for us to suggest im-
provements to this model; but in doing so we should introduce
mathematical problems for which no solution yet exists.

There are only two mathematically ‘tractable models which
exhibit a transition of a realistic kind. One is the Bose-Einstein
perfect gas, which has provided a model for the lambda-transition
in liquid helium, and the similar transition which occurs in super-
conducting metals at very low temperatures. This model cannot, of
course, be applied to other types of phase transition, and we shall
not discuss it further. The only other is the Ising model, which has
a certain amount of relevance for all transitions—except those in
liquid helium and superconductors, where quantum-mechanical
effects are obviously dominant.

Thus the Ising model has the supreme virtues of the only one
available. That it is quantitatively unacceptable can hardly be
denied. For this reason, we shall also explore as far as possible the
unsolved problems which arise in connection with more realistic
models. The most general problem of this type, which we call the
general association problem, has applications to problems quite
unconnected with phase transitions, though very relevant to
co-operative behaviour. This problem also is of a combinatorial
nature; it is of the same type which arises in the stacking of objects,
such as chairs and tables, in a space of prescribed dimensions.
Degenerate versions of this problem have a very simple appearance;;
‘but like most combinatorial problems, provide the mathematician
with a challenge as difficult to meet as any in the domain of science.

1.2. Principles of Statistical Mechanics

In order to reach a fundamental underétanding of the various
phenomena which have just been described, it will be necessary to
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invoke frequently certain principles of statistical mechanics. There
are already several excellent books in which these principles and
their more importa.nt consequences are discussed in some detail, but,
for the convenience of the reader, the required results will be
gathered together, and discussed briefly in this section.

We wish to consider a general physical system consisting, at the
atomic level, of a set of particles which may be, but are not neces-
sarily, all of the same kind. Depending on the physical situation,
the particles will be either electrons and positive ions, or atoms, or
molecules; the important requirement is that, if they have an
internal structure (as molecules and atoms certainly have), this
structure should be practically unaffected by their fluctuating
mutual interactions.

The whole system will be supposed to be enclosed within a region
of volume V, in such a way that the particles can neither escape nor
lose energy to their environment. The most important property of
the system, in a particular state, from the point of view of statistical
mechanics, is its total energy E. In quantum mechanics, the energy
of an enclosed system is not a continuous variable, but must take
one of a discrete set of values E,, E,, Eq, ..., known as the energy
levels of the system. Even though the interval between successive
energy levels is very small, the fact that they are distinct is often
of theoretical importance. However, it is possible for different states
of the system to have the same energy; the number of states, dis-
tinguishable on the atomic scale, which have the same energy, is
called the degeneracy of the corresponding energy level. In this
monograph we shall rarely be concerned with the actual values of
the energy levels or their degeneracies; but a brief discussion of the
principles which determine them will be found in sub-section ()
below.

(@) Statistical Mechanics of Simple Systems

For the sake of simplicity, we suppose first that the particles of
the system are all alike. The energy levels E, (s = 1,2,3, ...) then
depend only on the number of particles (N) and the shape and
volume ¥ of the enclosure. The degeneracy of the energy level E,,
i.e., the number of states with this energy, will be denoted by g (E ,)

’I‘he fundamental theorem of statistical mechanics may be stated
as follows. Let

B = 1/&T, (1.1)
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where T is the absolute temperature and % is Boltzmann’s constant
(1.38 x 1078 erg deg™?). Then, in thermodynamic equilibrium, the
probability of finding the system in a state of energy E,, with N
particles present, is

Py(E,) = gu(E,) exp (—BE,~BpV +BuN), (1.2)

where p will be interpreted as the mean hydrostatic pressure and
as the thermodynamic potential per particle. An elementary proof
of this theorem (which may be omitted by the reader who is already
convinced) is outlined in sub-section (b) below. Before proceeding
to this proof, it will be convenient to observe some of the conse-
quences.

(i) If the number of particles, IV, is regarded as known, so that
only the total energy of the system is uncertain, we must have

2‘1 Py(E) = 1, (L3)

where Y, effects a summation over all the energy levels of the
system of N particles. This is simply a statement that the sum of the
probabilities for a complete set of mutually exclusive alternatives is
1. The expression

Zy = Zgn(E) exp (-fE,) (1.4)

is known as the partition function; it depends on N and B, and also
on the volume V', because the energylevels £, depend on the volume.
If the partition function has been determined, all the thermo-

dynamic functions of the system can be calculated, as we shall now
demonstrate.

Let
Fy = puN—pV (1.5)
so that, according to (1.2) and (1.3),
exp(—pFy) = Zy. (1.6)
The internal energy Uy of the system is defined by
Uy = ZPN(EI) E, . (1'7)
$

and, by substitution from (1.2), this reduces to
Uy = Z3* S en(E)exp(~BE) E,

- L%y 3y
T Zy BB

(1.8)
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where the volume is kept constant during differentiation with
respect to B. Also, the mean hydrostatic pressure is defined by

= — X Py(E)dE,/aV) (1.9)

and this reduces in a similar way to
p = 27 S gs(E) exp (~BE)GE,(aV)

- L%y Oy

T BZyoVv oV’

The relations (1.8) and (1.10) show that F is the free energy of the
system, defined as in thermodynamics, and the relation (1.5) then
shows incidentally that p is the thermodynamic potential per

particle, as already stated.
From (1.6) it is clear that the free energy per particle is

Fy/N = —(KT|N)log Zy; (1.11)

(1.10)

this should be a function of the temperature T" and the mean
particle density »=N/V, but should otherwise be practically
independent of N, when N is very large.

(ii) If the number of particles, as well as the total energy of the
system is unknown, the normalization of the probabilities Py(E,) by
(1.3) ceases to apply, and we have instead

z_; S Py(E) = 1. (L.12)

The expression
0 = 3 5 gx(E)exp(—FE,+BuN) (1.13)

is called the grand partition function, and it obviously depends only
on B, u, and the volume V through E,. It is related to the partition
function Zy defined in (1.4) by

Q= Néo Zyexp (BuN). (1.14)

If Q, instead of Zy, has been determined, the thermodynamic
functions may still be calculated, as we shall show.
Comparison of (1.12) and (1.13) with (1.2) shows that

exp (BpV) = Q. (1.15)



