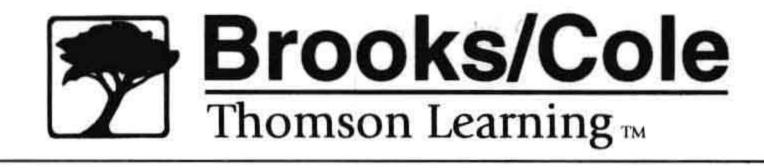

Elementary and Intermediate Algebra

Alan S. Tussy R. David Gustafson


Elementary and Intermediate Algebra

Alan S. Tussy

Citrus College

R. David Gustafson

Rock Valley College

Sponsoring Editor: Robert W. Pirtle

Project Development Editor: Michelle Paolucci

Marketing Manager: Leah Thomson

Marketing Communications: Samantha Cabaluna

Editorial Assistant: Erin Wickersham Production Editor: Ellen Brownstein

Production Service: Hoyt Publishing Services

Manuscript Editor: David Hoyt

Permissions Editor: Mary Kay Hancharick

Interior Design: Carolyn Deacy Cover Design: Vernon T. Boes

Cover Photo: H. Sakuramoto/Photonica Interior Illustration: Lori Heckelman

Print Buyer: Vena Dyer

Typesetting: The Clarinda Company

Cover Printing: Phoenix Color Corp.

Printing and Binding: R.R. Donnelley & Sons

COPYRIGHT © 2000 by Brooks/Cole

A division of Thomson Learning

The Thomson Learning logo is a trademark used herein under license.

For more information, contact:
BROOKS/COLE
511 Forest Lodge Road
Pacific Grove, CA 93950 USA
www.brookscole.com

All rights reserved. No part of this work may be reproduced, transcribed or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, Web distribution, or information storage and/or retrieval systems—without the prior written permission of the publisher.

For permission to use material from this work, contact us by

Web: www.thomsonrights.com

fax: 1-800-730-2215 phone: 1-800-730-2214

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Tussy, Alan S., [date]

Elementary and intermediate algebra/Alan S. Tussy, R. David Gustafson.

p. cm.

Includes index.

ISBN 0-534-36883-2 (alk. paper)

1. Algebra. I. Gustafson, R. David (Roy David), [date]. II. Title.

QA152.2.T883 2000

512.9-dc21

99-054434

Books in the Tussy and Gustafson Series

In paperback:

Basic Mathematics for College Students Student edition: ISBN 0-534-36493-4 Instructor's edition: ISBN 0-534-36494-2

Prealgebra

Student edition: ISBN 0-534-34326-0 Instructor's edition: ISBN 0-534-34327-9

Elementary Algebra

Student edition: ISBN 0-534-35528-5 Instructor's edition: ISBN 0-534-35598-6

Intermediate Algebra

Student edition: ISBN 0-534-35581-1 Instructor's edition: ISBN 0-534-36255-9

In hardcover:

Elementary Algebra

Student edition: ISBN 0-534-36882-4 Instructor's edition: ISBN 0-534-37461-1

Intermediate Algebra

Student edition: ISBN 0-534-36881-6 Instructor's edition: ISBN 0-534-37453-0

Elementary and Intermediate Algebra Student edition: ISBN 0-534-36883-2 Instructor's edition: ISBN 0-534-37471-9

To three good friends,

David, Ellen, and Bob

Preface

For the Instructor

An increasing number of schools are offering the traditional elementary algebra and intermediate algebra courses in combination. There are several advantages in doing this:

- Much of the redundancy encountered by teaching the elementary/intermediate sequence as two separate courses is eliminated. As a result, the students have more time to master the material.
- A combined approach promotes a smooth transition from the elementary algebra topics to the intermediate algebra topics.
- For many students, the purchase of a single textbook saves money.

However, there are several concerns inherent in offering a combination course:

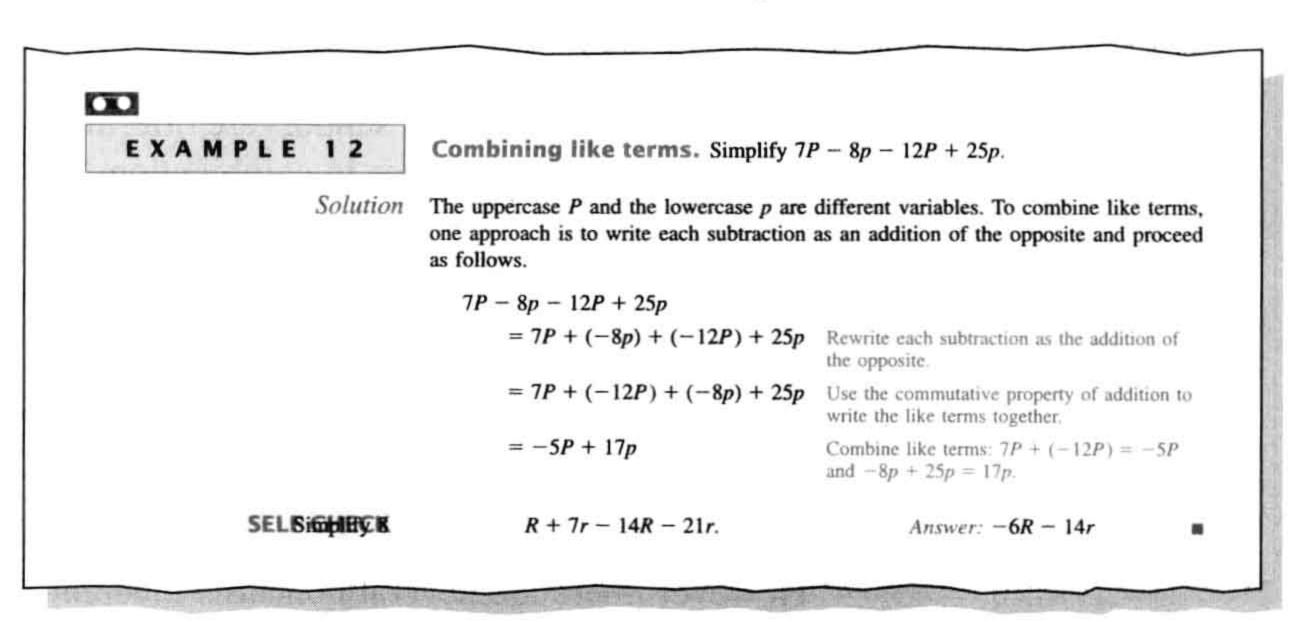
- The textbook used in such a course must include enough elementary algebra to ensure that students who complete the first half of the book, and then transfer, will have the prerequisite skills to enroll in an intermediate algebra course at another college.
- The elementary algebra material should not get too difficult too fast.
- Students entering the second half of the combination course must get some review of the basic topics so that they can compete with students continuing from the first half of the course.

Elementary and Intermediate Algebra has been written to address these concerns. The first seven chapters of this book provide a complete course in elementary algebra. The standard beginning algebra topics are introduced at a reasonable pace that allows the student to develop a strong conceptual foundation on which the second half of the course can build. Chapter 8 serves as the transitional chapter. It quickly reviews the topics taught in the first part of the course and extends those topics to the intermediate algebra level. Chapters 9–14 provide a complete course in intermediate algebra.

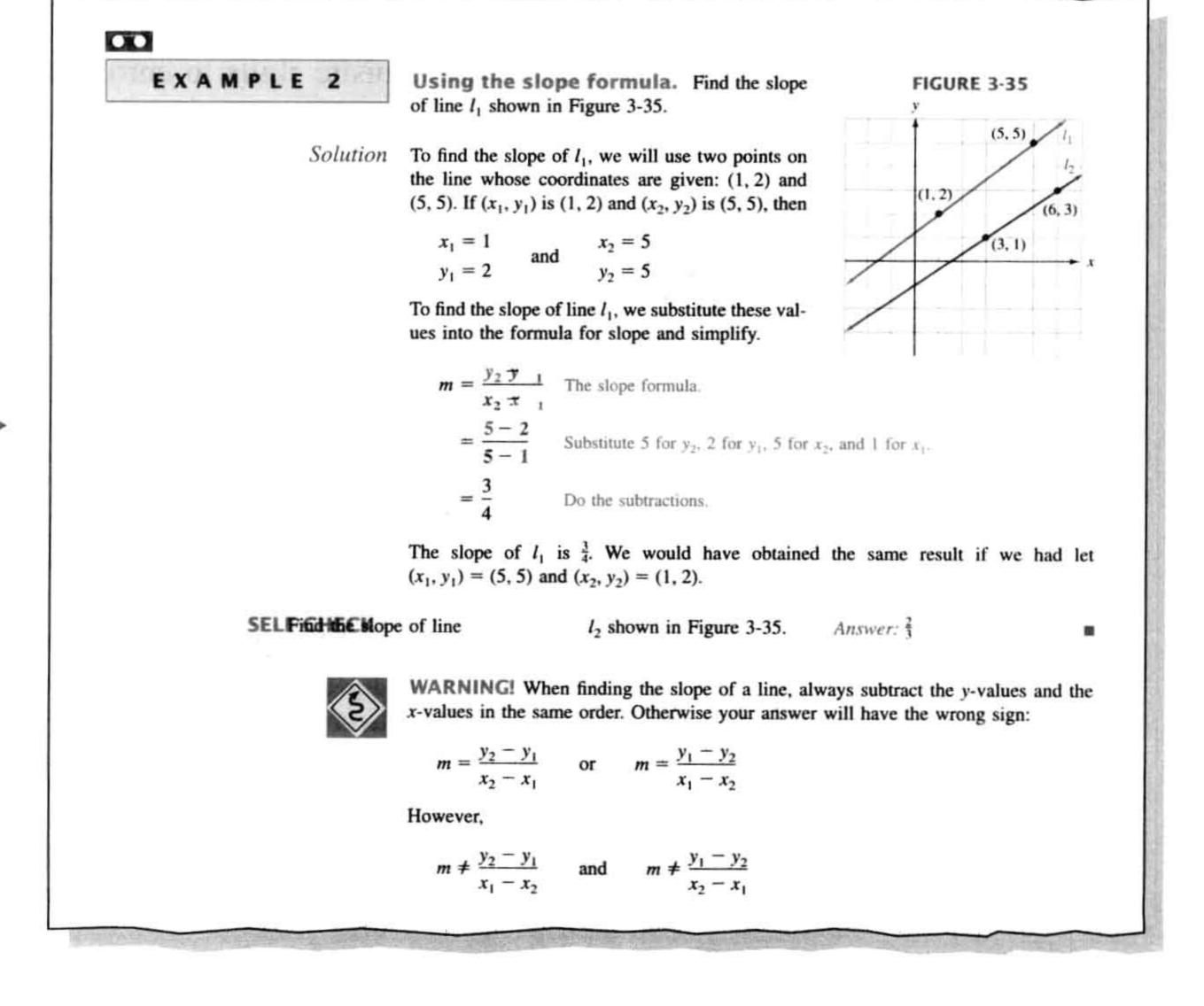
The purpose of this textbook is to teach students how to read, write, speak, and think mathematically using the language of algebra. We have used a blend of the traditional and the reform instructional approaches to do this. In this book, you will find the vocabulary, practice, and well-defined pedagogy of a traditional approach. You will also find that we emphasize the reasoning, modeling, communicating, and technological skills that are such a big part of today's reform movement.

This textbook expands the students' mathematical reasoning abilities and gives them a set of mathematical survival skills that will help them succeed in a world that increasingly requires that every person become a better analytical thinker.

Features of the Text


Chapter 1 An Innovative Introduction to Algebra

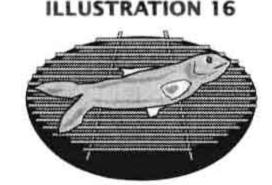
The best way to learn a new language is to be immediately immersed in it. Therefore, Chapter 1 begins with an introduction of the fundamental algebraic concepts of variable, equation, function, and graphing. We show the students how to translate English phrases to mathematical symbols, and we introduce a problem-solving strategy that is used throughout the book. From the start, students see how algebra is a powerful tool that they can use to solve problems.


Interactivity

Most worked examples in the text are accompanied by Self Checks. This feature allows students to practice skills discussed in the example by working a similar problem. Because the Self Check problems follow the worked examples, students can easily refer to the solution and author's notes of the example as they solve the Self Check. Author's notes are used to explain the steps in the solutions of examples. The notes are extensive so as to increase the student's ability to read and write mathematics.

- Example titles highlight the concept being discussed.
- Author's notes explain the steps in the solution process.
 - Most examples have Self Checks. The answers are ▶ provided.

Color is used to facilitate
students' understanding.

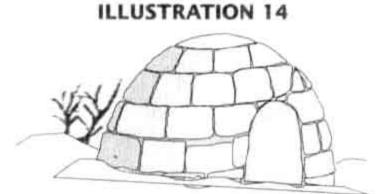


In-Depth Coverage of Geometry

Perimeter, area, and volume, as well as many other geometric concepts, are used in a variety of contexts throughout the book. We have included many drawings to help students improve their ability to spot visual patterns in their everyday lives.

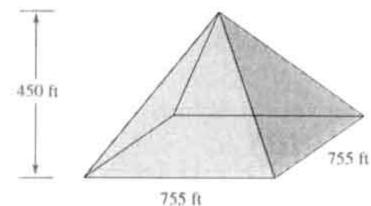
56. NATIVE AMERICAN DWELLING The teepees constructed by the Blackfoot Indians were coneshaped tents made of long poles and animal hide, about 10 feet high and about 15 feet across at the ground. (See Illustration 13.) Estimate the volume of a teepee with these dimensions, to the nearest cubic foot.

2.6 Formulas 149

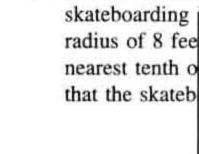


Geometric topics are presented in a practical setting.

ILLUSTRATION 13



57. IGLOO During long journeys, some Canadian Inuit (Eskimos) built winter houses of snow blocks piled in the dome shape shown in Illustration 14. Estimate the volume of an igloo to the nearest cubic foot having an interior height of 5.5 feet.



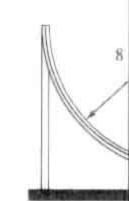

58. PYRAMID The Great Pyramid at Giza in northern Egypt is one of the most famous works of architecture in the world. Use the information in Illustration 15 to find the volume to the nearest cubic foot.

ILLUSTRATION 15

59. BARBECUING See Illustration 16. Use the fact that the fish is 18 inches long to find the area of the bar60. SKATEBOARDING A "half-pipe" ramp used for

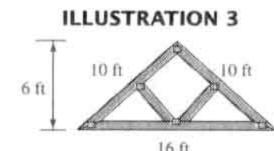
61. OHM'S LAW tronics. Solve peres) when th tance R is 12

62. GROWTH OF \$P grows to \$4 A = P(1 + rt).years, a woma that pays 6%.

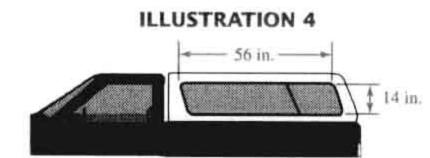
63. POWER LOSS current I passe $P = I^2 R$. Solve amperes, find

64. FORCE OF G jects in Illustra gravitation, F,

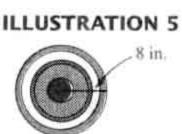
> where G is a c them. Solve fo


65. THERMODYN tion is given b mula for the p 148 Chapter 2 / Real Numbers, Equations, and Inequalities

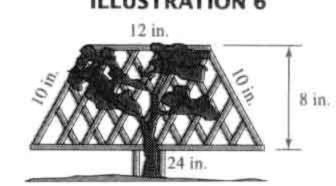
43.
$$C = \frac{5F - 160}{9}$$
; for F **44.** $F = \frac{GMm}{d^2}$; for d^2


APPLICATIONS

In Exercises 45-66, a calculator will be helpful with some problems.


45. CARPENTRY Find the perimeter and area of the truss shown in Illustration 3.

46. CAMPERS Find the area of the window of the camper shell shown in Illustration 4.


47. ARCHERY To the nearest tenth, find the circumference and area of the target shown in Illustration 5.

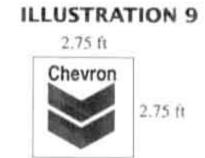
48. GEOGRAPHY The circumference of the earth is about 25,000 miles. Find its diameter to the nearest mile.


49. LANDSCAPING Find the perimeter and the area of the redwood trellis in Illustration 6.

ILLUSTRATION 6

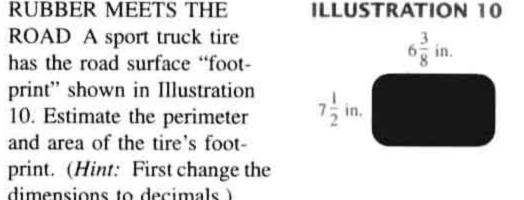
50. VOLUME To the nearest hundredth, find the volume of the soup can shown in Illustration 7.

ILLUSTRATION 7

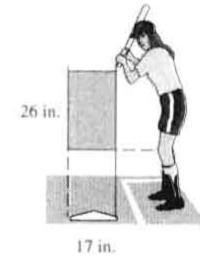


51. "THE WALL" The Vietnam Veterans Memorial is a black granite wall recognizing the more than 58,000 Americans who lost their lives or remain missing. A diagram of the wall is shown in Illustration 8. Find the total area of the two triangular-shaped surfaces on which the names are inscribed.

ILLUSTRATION 8



52. SIGNAGE Find the perimeter and area of the service station sign shown in Illustration 9.


53. RUBBER MEETS THE ROAD A sport truck tire has the road surface "footprint" shown in Illustration 10. Estimate the perimeter and area of the tire's foot-

dimensions to decimals.)

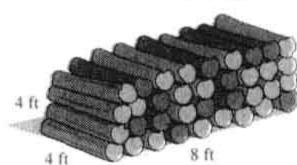
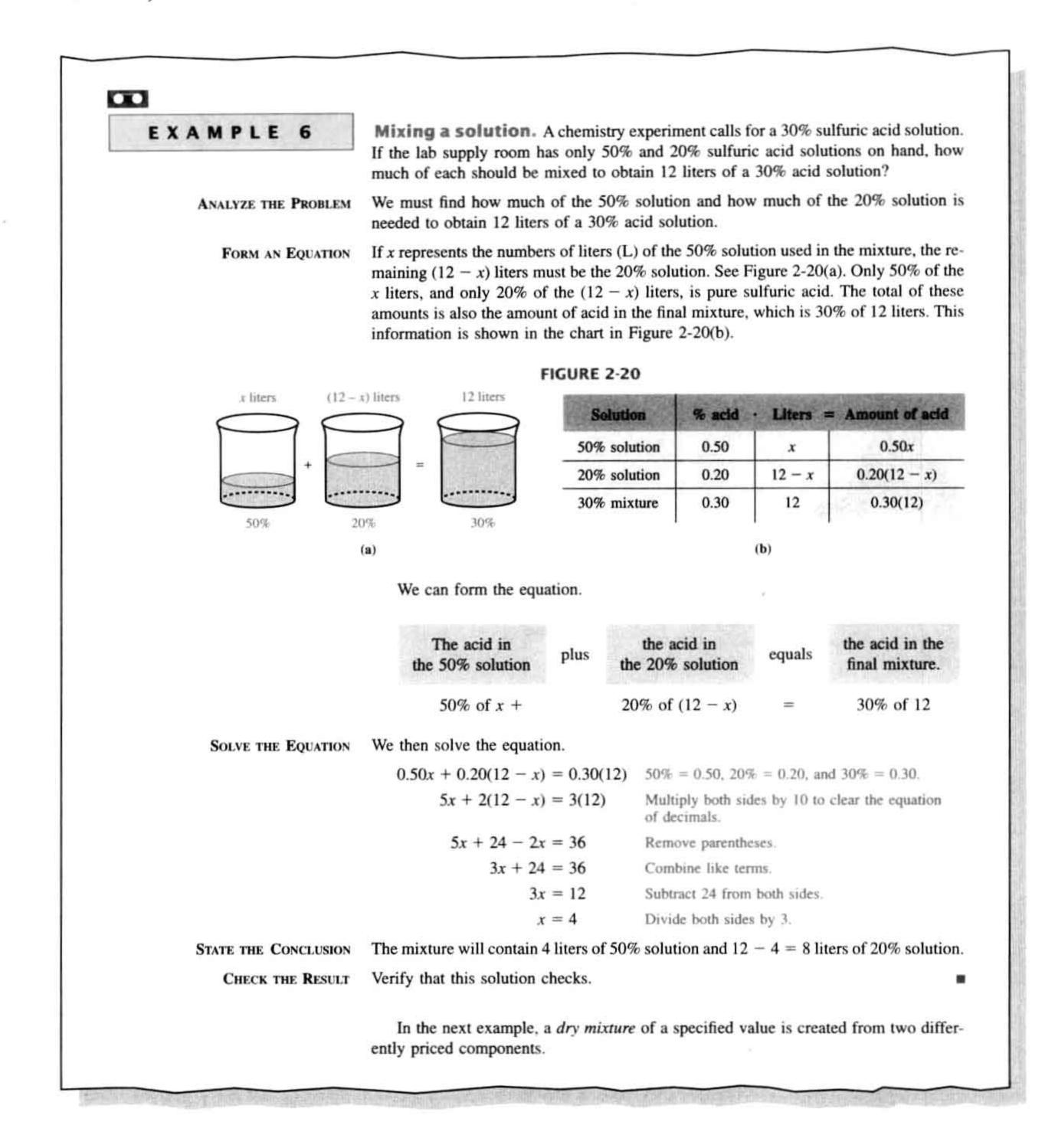

54. SOFTBALL The strike zone in fastpitch softball is between the batter's armpit and top of her knees, as shown in Illustration 11. Find the area of the strike zone.

ILLUSTRATION 11

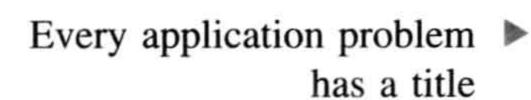
55. FIREWOOD The dimensions of a cord of firewood are shown in Illustration 12. Find the area on which the wood is stacked and the volume the cord of firewood occupies.

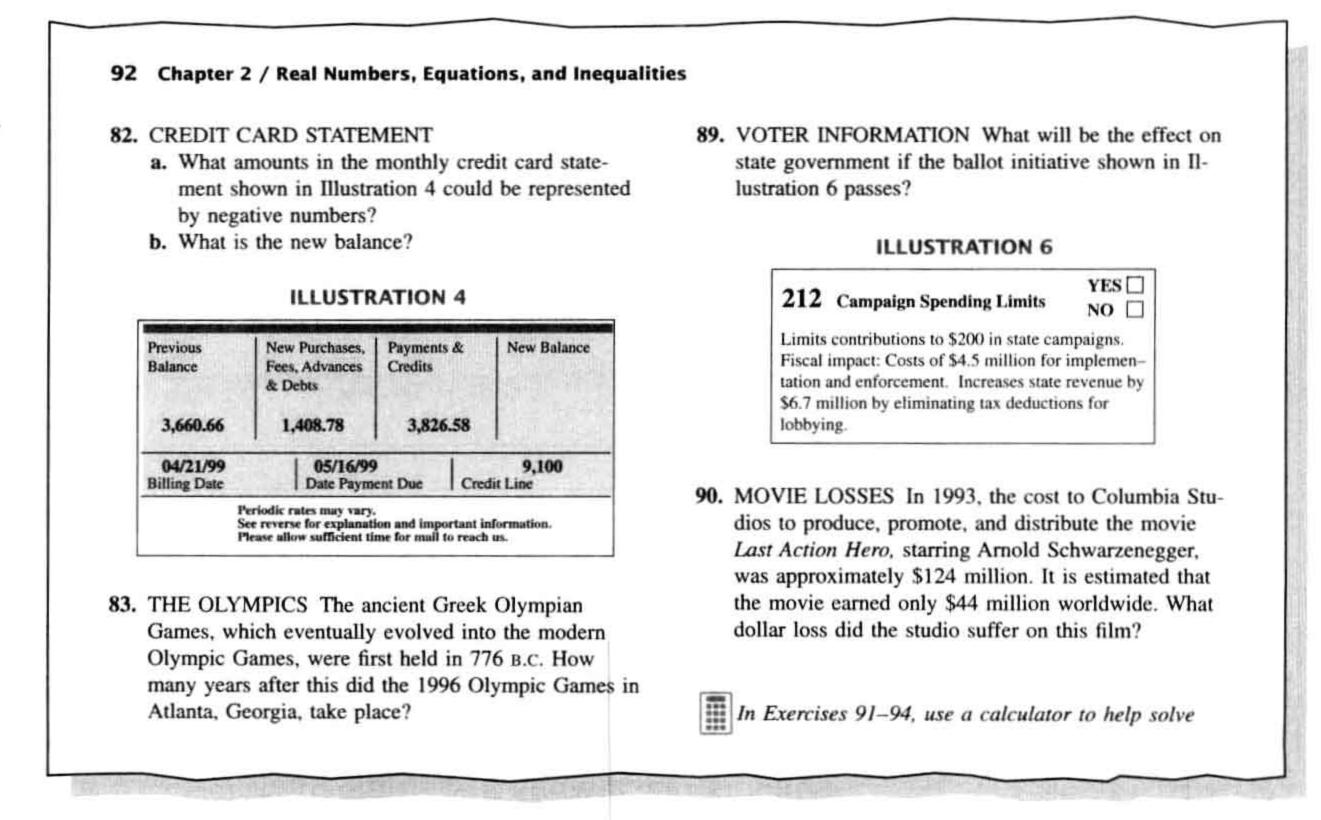
ILLUSTRATION 12


Geometric topics appear throughout the text and are presented in a way that reinforces important algebra skills.

Coordinate Graphing Appears Early

The foundation for coordinate graphing is laid in Chapters 1 and 2, where the students graph many different types of real numbers on the number line. In Chapter 3, students learn how to graph lines. They quickly learn that the graph of an equation in two variables is not always a straight line.


Problem-Solving Strategy


One of the major objectives of this textbook is to make students better problem solvers. To this end, we use a five-step problem-solving strategy throughout the book. The five steps are: Analyze the problem, Form an equation, Solve the equation, State the conclusion, and Check the result.

Applications and Connections to Other Disciplines

A distinguishing feature of this book is its wealth of application problems. We have included numerous applications from disciplines such as science, economics, business, manufacturing, history, and entertainment, as well as mathematics.

Study Sets—More Than Just Exercises

The problems at the end of each section are called Study Sets. Each Study Set includes Vocabulary, Notation, and Writing problems designed to help students improve their ability to read, write, and communicate mathematical ideas. The problems in the Concepts section of the Study Sets encourage students to engage in independent thinking and reinforce major ideas through exploration. In the Practice section of the Study Sets, students get the drill necessary to master the material. In the Applications section, students deal with real-life situations that involve the topics being studied. Each Study Set concludes with a Review section consisting of problems selected from previous sections.

_	STUDY	SET
	Sectio	n 2.1
VOCABULARY		16. a.
In Exercises 1–6, fill true.	in the blanks to make the statements	b.
	at are greater than zero are called real numbers.	
	at are less than zero are called real numbers.	NOTA In Exer
3. The only real nur negative is	mber that is neither positive nor	17. Fin
 The answer to a a difference. 	problem is called	124
two numbers can	be added in either order to get the	124 ILI
addition any way	allows us to group numbers in we want is called the property of addition.	•
	e the number line in Illustration 1 to	NOTA
7. 2 + 3	8. -3 + (-2)	In Exer
9. $4 + (-3)$	10. −5 + 3	15. -7
-5 -4 -3 -2	LUSTRATION 1 2 -1 0 1 2 3 4 5	
In Exercises 11–14, fil ments true.	ll in the blanks to make the state-	16. 6(<i>b</i>
 To add two real n sign, add their their common sign 	values and attach	
12. To add two real n	numbers with different signs, their absolute values, the	17. a.
	from the, and the number with the absolute value.	b. 18. Fill
Nat 25 8 15 0	n a, add the of b	
to a. 4. The opposite of 7	is -15 is	PRACT

Find each sum.

c. $-\frac{3}{4} + \frac{3}{4}$

a. 5 + (-5)

b. -2.2 + 2.2

d. 19 + (-19)

16. a. Use the variables m and n to state the commutative property of addition.

b. Use the variables r, s, and t to state the associative property of addition.

NOTATION

NOTATION

In Exercises 17-20, complete each solution.

17. Find (-13 + 6) + 4.

(-13+6)+4=+(6+4)

Each Study Set contains Vocabulary, Concepts, Notation, Practice, Applications, Writing, and Review sections.

124 Chapter 2 / Real Numbers, Equations, and Inequalities

ILLUSTRATION 3

In Exercises 15-16, complete each solution.

15. $-7(a^2 + a - 5) = a^2 + (a^2 + a^2 +$

 $=-7a^2-7a+35$

= 18b - 23

16. $6(b-5)+12b+7=6\cdot -6\cdot +12b+7$

 $=-7a^2+(-7a)-($

= 6b - + 12b + 7

= 6b - + 12b + 7

= 6b + b - + 7

 $=-7a^2-$ -(-35)

ILLUSTRATION 4

Then identify the coefficient of each term. 47. -5r + 4s

In Exercises 47-54, list the terms in each expression.

$$47. -5r + 4s$$

48.
$$2m + n - 3m + 2n$$

49.
$$-15r^2s$$

50.
$$4b^2 - 5b + 6$$
 51. $50a + 2$

52.
$$a^2 - ab + b^2$$

53.
$$x^3 - 125$$

54.
$$-2.55x + 1.8$$

In Exercises 55-58, identify the coefficient of each term.

56.
$$-9.9x^3$$

$$-2x$$

57.
$$\frac{1}{4}x$$

58.
$$-\frac{2x}{3}$$

In Exercises 59-62, tell whether the variable x is used as a factor or a term.

59.
$$24 - x$$

61.
$$24 + 3x$$

62. x - 12

PRACTICE

In Exercises 19-2

-(x+10)

17. a. Are 2K and 3k like terms?

b. Are -d and d like terms?

18. Fill in the blank to make the statement true.

19. 9(7m)

23.
$$(-5p)(-4b)$$

25.
$$-5(4r)(-2r)$$

In Exercises 27-4

remove parenthese

27.
$$5(x+3)$$

29.
$$-2(b-1)$$
 31. $(3t-2)8$

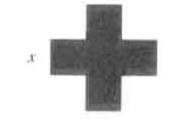
33.
$$(2y-1)6$$

35.
$$0.4(x-4)$$

37.
$$-\frac{2}{3}(3w-6)$$

39.
$$r(r-10)$$

41.
$$-(x-7)$$


43.
$$17(2x - y + y)$$

45. -(-14 + 3p)

APPLICATIONS

91. THE AMERICAN RED CROSS In 1891, Clara Barton founded the Red Cross. Its symbol is a white flag bearing a red cross. If each

side of the cross in Illustration 5 has length x, write an algebraic expression for the perimeter (the total distance around the outside) of the

ILLUSTRATION 5


- cross. 92. BILLIARDS Billiard tables vary in size, but all tables are twice as long as they are wide.
 - a. If the billiard table in Illustration 6 is x feet wide, write an expression involving x that represents its length.
 - b. Write an expression for the perimeter of the table.

93. PING-PONG Write an expression for the perimeter of the ping-pong table shown in Illustration 7.

94. SEWING See Illustration 8. Write an expression for the length of the yellow trim needed to outline the pennant with the given side lengths.

2.5 Solving Equations 125

WRITING

- 95. Explain why $3x^2y$ and $5x^2y$ are like terms.
- **96.** Explain why $3x^2y$ and $5xy^2$ are not like terms.
- 97. Distinguish between a factor and a term of an algebraic expression. Give examples.
- 98. Tell how to combine like terms.

REVIEW

In Exercises 99-102, evaluate each expression given that x = -3, y = -5, and z = 0.

99.
$$x^2z(y^3-z)$$

100.
$$z - y^3$$

$$\frac{x-y^2}{2y-1+y}$$
 102. $\frac{2y}{y}$

101.
$$\frac{x-y^2}{2y-1+x}$$
 102. $\frac{2y+1}{x}$

Group Work

A one-page feature called Accent on Teamwork appears near the end of each chapter. It gives the instructor a set of problems that can be assigned as group work or to individual students as outside-of-class projects.

Key Concepts

quarters of a pound and label the y-axis in cents.

Fourteen key algebraic concepts are highlighted in one-page Key Concept features, appearing near the end of each chapter. Each Key Concept page summarizes a concept and gives students an opportunity to review the role it plays in the overall picture.

GROUP ACTIVITIES FOR CHAPTER 3 Accent on Teamwork Section 3.1 ILLUSTRATION 1 Slope Object Daily high temperature For a 2-week period, plot the daily high temperature for your city on a rectangular coor-Ladder dinate system. You can normally find this information in a local newspaper. Label the x-axis "observation day" and the $\frac{54}{12} = 4.5$ y-axis "daily high temperature in degrees Fahrenheit." For example, the ordered pair (3, 72) indicates that on day 3 of the observation period, the high temperature was 72°F. At the end of the 2-week period, see whether any temperature trend is apparent from the graph. Section 3.2 Translations On a piece of graph paper, sketch the graph of y = |x| with a black marker. Using a different color, sketch the graphs of y = |x| + 2 and y = |x| - 2 on the could be posted next to the scale in the produce area so that shoppers could determine from the graph the cost of a basame coordinate system. On another piece of graph paper, do the same for y = |x| and y = |x + 2| and y = |x - 2|. nana purchase up to 8 pounds in weight. Label the x-axis in


Make some observations about how the graph of y = |x| is "moved" or "translated" by the addition or subtraction of 2. Use what you have learned to discuss the graphs of $y = x^2$,

 $y = x^2 + 2$, $y = x^2 - 2$, $y = (x + 2)^2$, and $y = (x - 2)^2$.

KEY CONCEPT Describing Linear Relationships In Chapter 3, we discussed four ways to mathematically describe linear relationships between two quantities. **Equations in Two Variables** The general form of the equation of a line is Ax + By = C. Two very useful forms of the equation of a line are the slope-intercept form and the point-slope form. 1. Write the equation of a line with a slope of -3 and a 2. Write the equation of the line that passes through y-intercept of (0, -4). (5, 2) and (-5, 0). Answer in slope-intercept form. **Rectangular Coordinate Graphs** The graph of an equation is a "picture" of all of its solutions (x, y). Important information can be obtained from a graph. 3. Complete the table of solutions for 2x - 4y = 8. Then 4. See Illustration 1. graph the equation. a. What information does the y-intercept of the graph give us? b. What is the slope of the line and what does it tell us? 2x - 4y = 8**ILLUSTRATION 1** -2 50,000 40,000 30,000 20,000 10,000 1 2 3 4 5 6 7 8 9 Age (years)

Functions and Modeling

The concept of function is introduced in Chapter 3 and is stressed throughout the text. Students learn to use function notation, graph functions, and write functions that mathematically model many interesting real-life situations. By the end of the course, students will recognize families of functions, their graphs, and areas of application.

Systematic Review

Each Study Set ends with a Review section that contains problems similar to those in previous sections. Each chapter ends with a Chapter Review and a Chapter Test. The chapter reviews have been designed to be "user friendly." In a unique format, the reviews list the important concepts of each section of the chapter in one column, with appropriate review problems running parallel in a second column. In addition, Cumulative Review Exercises appear after Chapters 2, 4, 6, 8, 10, 12, and 14.

CHAPTER REVIEW

Describing Numerical Relationships Section 1.1

CONCEPTS

Tables, bar graphs, and line graphs are used to describe numerical relationships.

The result of an addition is

called the sum; of a subtrac-

multiplication, the product;

and of a division, the quo-

Variables are letters used to

An equation is a mathemati-

cal sentence that contains an

= sign. Variables and/or

numbers can be combined

with the operations of addi-

tion, subtraction, multiplica-

tion, and division to create

algebraic expressions.

stand for numbers.

tient.

tion, the difference; of a

REVIEW EXERCISES

1. Illustration 1 lists the worldwide production of wide-screen TVs. Use the data to construct a bar graph. Describe the trend in the production in words.

ILLUSTRATION 1

Year	Production (millions of units)
'95	3
'96	5
'97	7
'98	11

Source: Electronic Industries Association of Japan

LUCTRATION

2. Consider the line graph in Illustra-

Chapter Test 183

CHAPTER 2

Test

1. Add (-6) + 8 + (-4).

2. Subtract 1.4 - (-0.8).

3. Multiply (-2)(-3)(-5).

4. Divide
$$\frac{-22}{-11}$$
.

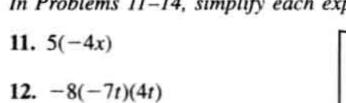
5. Evaluate $-7[(-5)^2 - 2(3 - 5^2)]$.

6. Evaluate
$$\frac{3(20-4^2)}{-2(6-2^2)}$$
.

In Problems 7-8, let x = -2, y = 3, and z = 4. Evaluate each expression.

7.
$$xy + z$$

5.


8.
$$\frac{z+4y}{2x}$$

9. What is the coefficient of the term 6x?

10. How many terms are in the expression $3x^2 + 5x - 7$?

20.

In Problems 11-14, simplify each expression.

13.
$$3(x + 2) - 3(4 - x)$$

14.
$$-1.1d^2 - 3.8d^2$$

In Problems 15-22, solve each equa

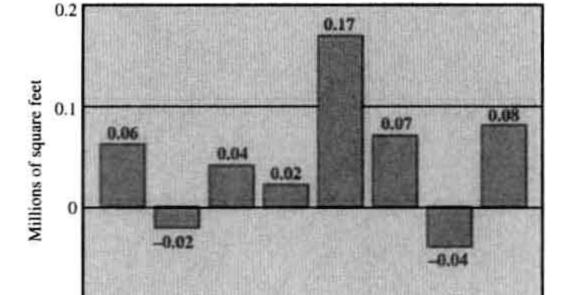
15.
$$12x = -144$$

17.
$$\frac{c}{7} = -1$$
 18. 3

19.
$$2(x-7) = -15$$

21.
$$23 - 5(x + 10) = -12$$
 22. 5

In Problems 23-24, solve each equa indicated.


23.
$$d = rt$$
; for t

24.
$$A = P + Prt$$
; for r

25. COMMERCIAL REAL ESTATE Net absorption is a term used to indicate how much office space in a city is being purchased. Use the information from the graph in Illustration 1 to determine the eight-quarter average net absorption figure for Long Beach, Cali-

ILLUSTRATION 1

Downtown Long Beach Office Net Absorbtion

L'96 J L 1997 — 1998 — J Based on information from Los Angeles Times (Oct. 13, 1998) Section C10.

QIV QI QII QIII QIV QI QII QIII

Cumulative Review Exercises

CHAPTERS 1-2

In Exercises 1-4, tell whether the expression is an equation.

1.
$$m - 25$$

2.
$$t = 25r$$

4. x + 1 = 24

$$\frac{p+5}{2}$$

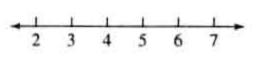
In Exercises 13-16, use a calculator to find each square root to the nearest hundredth. 13. $\sqrt{77}$

13.
$$\sqrt{77}$$

14.
$$\sqrt{0.26}$$

15.
$$\sqrt{\pi}$$

16.
$$\sqrt{\frac{7}{5}}$$


In Exercises 5-6, classify each number as a natural number, a whole number, an integer, a rational number, an irrational number, and a real number. Each number may be in several classifications.

5. 3

6. −0.25

In Exercises 7-8, graph each set of numbers on the number line.

7. The natural numbers between 2 and 7

8. The real numbers between 2 and 7

In Exercises 17-20, write each product using exponents.

17.
$$3 \cdot 3 \cdot 3$$

19. $4 \cdot x \cdot x \cdot y \cdot y$

18.
$$8 \cdot \pi \cdot r \cdot r$$

20. $m \cdot m \cdot m \cdot n$

In Exercises 21-24, evaluate each expression.

22.
$$-2 \cdot 7^2$$

23.
$$6+3\left(\frac{5}{2}\right)-\frac{1}{2}$$

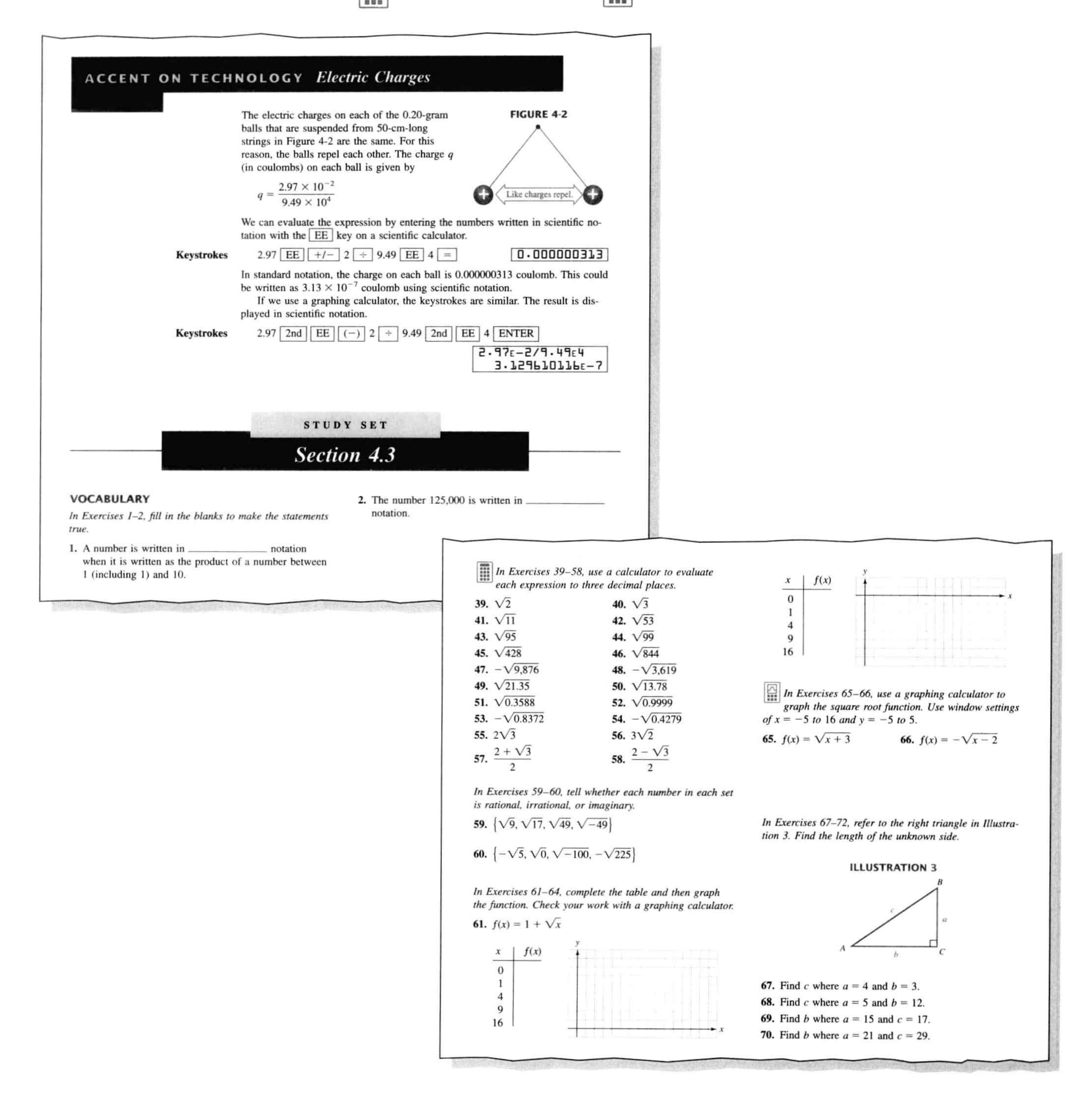
24.
$$\frac{12^2-4^2-2}{2(7-4)}$$

In Exercises 25-26, write each phrase as an algebraic expression.

25. The sum of the width w and 12

26. Four less than a number n

In Exercises 27-30, complete each table of values.


27.
$$t | t^2 -$$

28.
$$t (t-4)$$
0
1

In Exercises 9-12, evaluate each expression.

Calculators

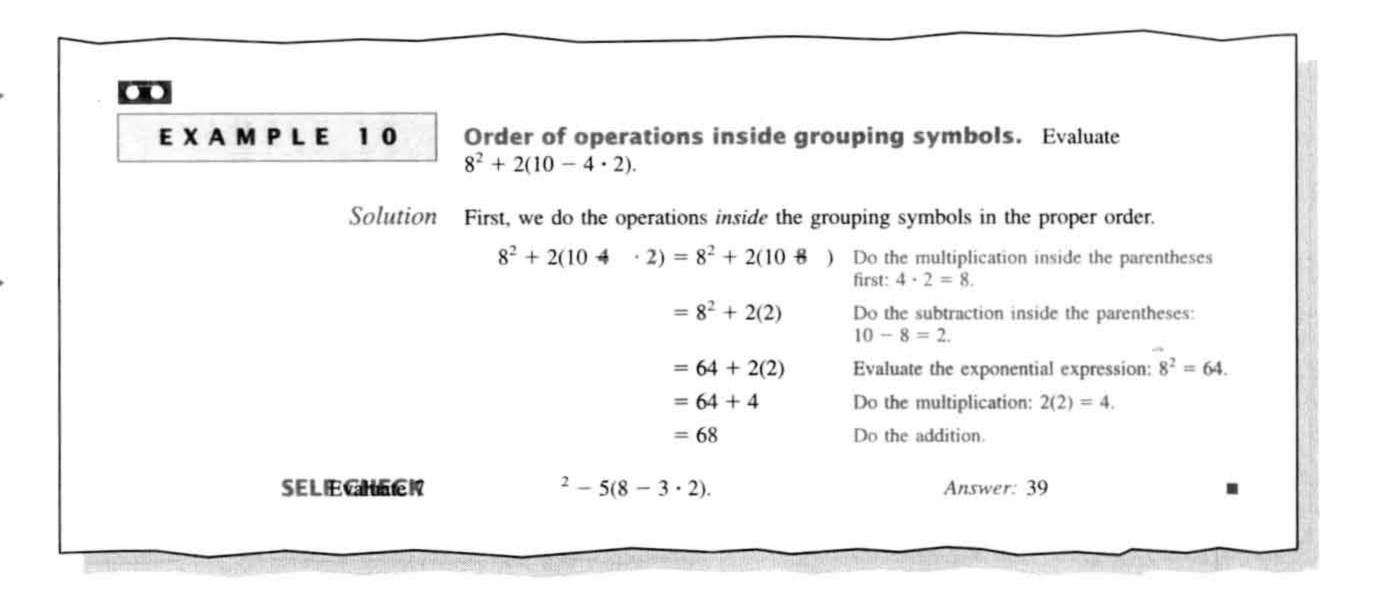
For instructors who wish to use calculators as part of the instruction in this course, the text includes an Accent on Technology feature that introduces keystrokes and shows how scientific calculators and graphing calculators can be used to solve problems. In the Study Sets, logos are used to denote problems that require a scientific calculator or a graphing calculator .

Appendixes

A review of arithmetic fractions and decimal fractions is included in Appendix I. Appendix II covers synthetic division. For each, problem sets are included for student practice. Appendix III gives a table of roots and powers.

Student Support

We have included many features that make *Elementary and Intermediate Algebra* very accessible to students. (See the examples starting on page xii.)

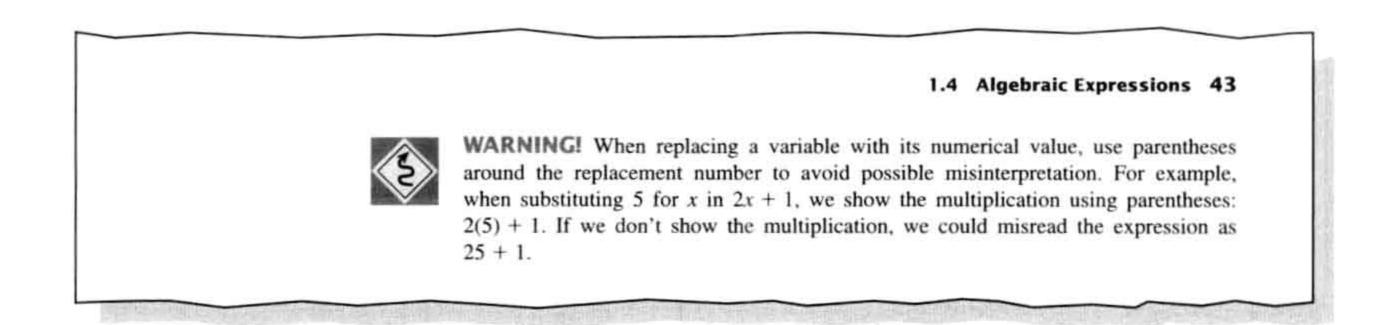

Worked Examples

The text contains over 1,000 worked examples, many with several parts. Explanatory notes make the examples easy to follow.

Author's Notes

Author's notes, printed in red, are used to explain the steps in the solutions of examples. The notes are extensive; complete sentences are used so as to increase the students' ability to read and write mathematics.

- A special logo shows which examples are included in the videotape series.
- Each step is explained using beddetailed author's notes.

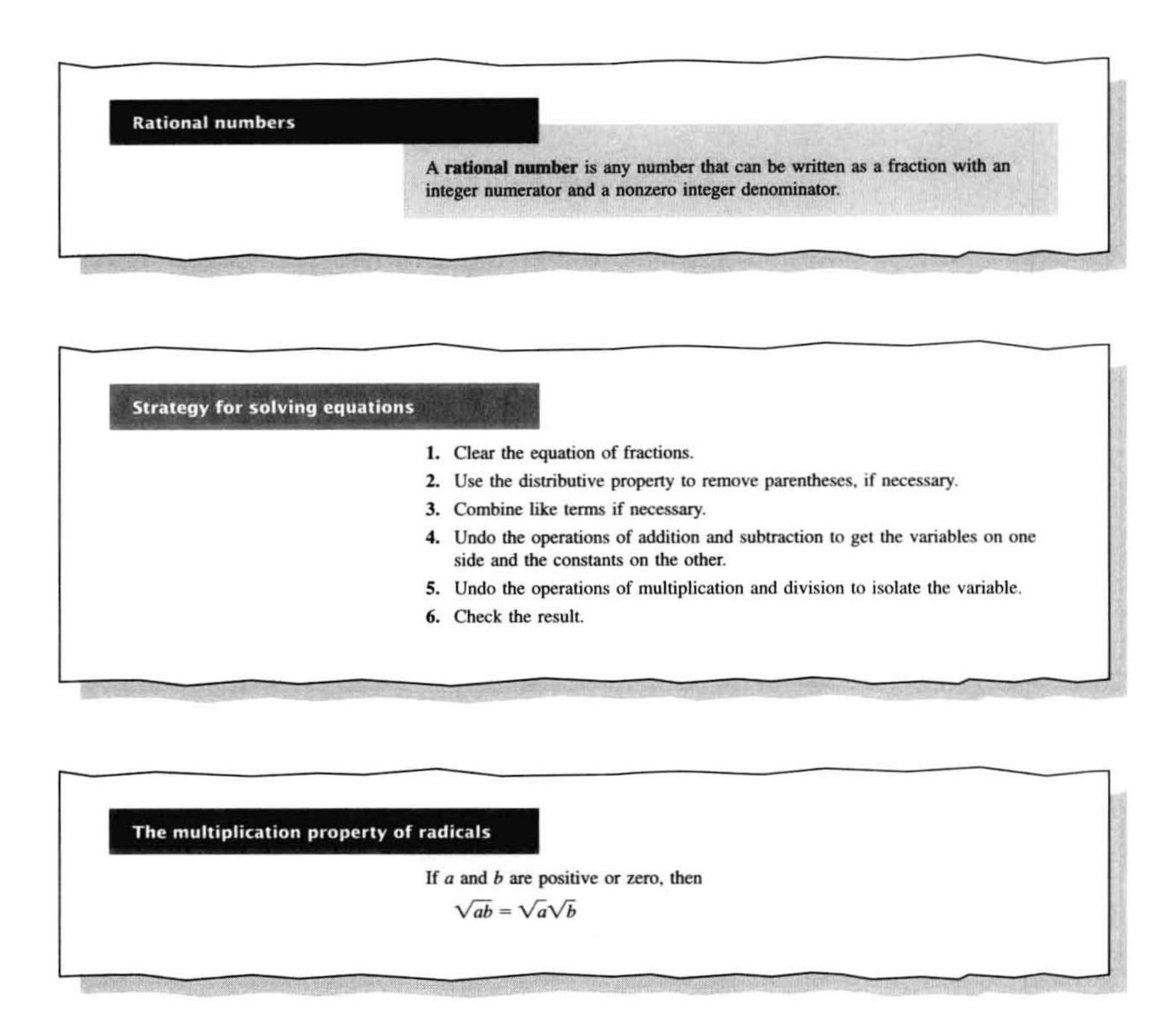


Self Checks

There are hundreds of Self Check problems that allow students to practice the skills demonstrated in the worked examples.

Warnings

Throughout the text, students are warned about common mistakes and how to avoid them.



Videotapes

The videotape series that accompanies this book uses eye-catching computer graphics to show students the steps in solving many examples in the text. A video logo placed next to an example indicates that the example is taught on tape. In addition, the tapes present the solutions of two Study Set problems from each section.

Functional Use of Color

For easy reference, definition boxes (light blue with a green title), strategy boxes (light yellow with a red title), and rule or property boxes (bright yellow with royal blue title), are color-coded. In addition, the book uses color to highlight terms and expressions that you would point to in a classroom discussion.

Problems and Answers

The book includes more than 10,000 carefully graded exercises. In the Student Edition, Appendix IV provides the answers to the odd-numbered exercises in the Study Sets, as well as all the answers to the Key Concept, Chapter Review, Chapter Test, and Cumulative Review problems.

Reading and Writing Mathematics

Also included (on pages xxvi-xxvii) are two features to help students improve their ability to read and write mathematics. "Reading Mathematics" helps students get the most out of the examples in this book by showing them how to read the solutions properly. "Writing Mathematics" highlights the characteristics of a well-written solution.

Study Skills and Math Anxiety

These two topics are discussed in detail in the section entitled "For the Student" at the end of this preface. In "Success in Algebra," students are asked to design a personal strategy for studying and learning the material. "Taking a Math Test" helps students prepare for a test and then gives them suggestions for improving their performance.

Ancillaries for the Instructor

Complete Solutions Manual

Complete, worked-out solutions for all exercises in the text are provided.

Test Items

These printed test forms include multiple-choice and free-response questions, keyed to the text.

Thomson Learning Testing Tools CD

This integrated package features algorithmic test generation and class management capabilities. Using the CD, a professor can easily post sample tests and examinations to the Internet or the local area network.

Interactive Algebra 3.0

This text-specific tutorial software program is offered in an instructor and a student version. It offers a mathematical guide to students of any technological proficiency, as well as a tracking program enabling professors to follow their students' progress.

Text-Specific Video Series

The tapes work through examples from each section of the text, with additional solutions to two Study Set problems from every section.

Demo Video

This demonstration video, approximately 30 minutes long, features highlights from the text-specific video series.

Ancillaries for the Student

Student Solutions Manual

This manual contains complete, worked-out solutions for the odd-numbered problems.

Greatest Hits Tutorial Video

The video features the concepts and skills students traditionally have the most difficulty comprehending. The tape includes examples, chosen by the authors, from all chapters.

Acknowledgments

We are grateful to the instructors who have reviewed the text at various stages of its development. Their comments and suggestions have proven invaluable in making this a better book. We sincerely thank all of them for lending their time and talent to this project.