BNTRODUCTION TORE

. PUTERN
'MPROGRAMMING
B USING TURBO PASCAL

E. JOHNSON DAVID M. KEIL

AAAAAAAAAAAALAAALAAALAALAAALAAAAAALL,

Introduction to
Computer
Programming using
Turbo Pascal

Richard E. Johnson

David M. Keil

WEST PUBLISHING COMPANY
Minneapolis/St. Paul New York Los Angeles San Francisco

VVY Production Credits YVV

Composition: Carlisle Communications

Copyediting: Loretta Palagi

Cover Image: Kirsten L. Johnson and Kristopher Hill

Text Design: Rosyln M. Stendahl. Dapper Design

Photo Credits: 5, 137, 193, 446 ©1994 Historical Pictures/Stock Montage, Inc.
160 (left and right) Courtesy of International Business Machines
Corporation

WEST'S COMMITMENT TO THE ENVIRONMENT

In 1906. West Publishing Company began recycling materials left over from the production
of books. This began a tradition of efficient and responsible use of resources. Today. up to 95
percent of our legal books and 70 percent of our college and school texts are printed on
recycled, acid-free stock. West also recycles nearly 22 million pounds of scrap paper
annually-the equivalent of 181,717 trees. Since the 1960s. West has devised ways to capture
and recycle waste inks, solvents, oils, and vapors created in the printing process. We also
recycle plastics of all kinds, wood, glass, corrugated cardboard, and batteries, and have
eliminated the use of Styrofoam book packaging. We at West are proud of the longevity and
the scope of our commitment to the environment.

Production, Prepress, Printing and Binding by West Publishing Company.

@ TEXT IS PRINTED ON 10°% POST CONSUMER RECYCLED PAPER PJ& FRINTED WITH (o o)

SOYINK| <

British Library Cataloguing-in-Publication Data. A catalogue record for this book is available
from the British Library.

Copyright © 1995 By WEST PUBLISHING COMPANY
610 Opperman Drive
P.O. Box 64526
St. Paul, MN 55164-0526

All rights reserved

Printed in the United States of America
0201009998979695 876543210
Library of Congress Cataloging-in-Publication Data

Johnson, Richard, 1932-
Introduction to computer programming using Turbo Pascal / Richard
Johnson. David Keil.
p. cm.

Includes index.

ISBN 0-314-04206-7 (pbk.)

1. Pascal (computer program language) 2. Turbo Pascal (Computer
file) 3. Object-oriented programming (Computer science) I. Keil,
David. 1I. Title.
QA76.73.P2]63 1994
005.1373--dc20 94-13901

VYV VVVVVVVVVVVVVVVVVVVVYVYVYY

Introduction to
Computer
Programming using
Turbo Pascal

VVY Dedication VYVY

Dedicated, with love, to Jessy, Kevin, Kirsten,
Leif, Juan David, and Leonilda, and to our parents

LVVVVVVVVVVVVVVVVVVVVVVVV‘

Preface

This text and the accompanying program disk are based on ideas and materials
originally developed for two distinct but overlapping one-semester courses, Intro-
duction to Computer Science and Pascal Programming.

Different views exist about where the boundary lies between computer science
and computer programming, and to what extent the two subjects overlap. We
believe that to lay claim to the title “computer scientist” you must be reasonably
competent at writing programs in some language. We also believe that to program
well in any language you should have a rudimentary knowledge of the architecture
and mathematics of a general-purpose computer.

V¥V A Note on Chapter 1

Chapter 1 describes a simplified computer and a ten-instruction assembly language
for it. We feel that this introduction to the basic operation of a digital computer will
enrich the subsequent study of programming in a high-level language (in this case,
Pascal). When a compiled version of one of your programs executes, you will have
a better idea of what occurs at the machine level. Some of the mystery of the
“magic box™ will have been revealed. The program example diskette that
accompanies the text includes software to write, assemble, and run programs
written in the assembly language of Chapter 1. Appendix B describes the use of this
software.

Chapter 1 has a second objective. The three fundamental control structures of all
modern languages, the sequence, the decision (branch), and the loop, are introduced
using machine-level programming examples unencumbered by the syntax require-
ments of Pascal. When the IF...THEN...ELSE statement and the Pascal loops
(FOR, WHILE, REPEAT) are introduced in later chapters, the concepts of
branching and looping will be familiar to you; only the syntax will be new.

¥ Why Turbo Pascal?

Our classroom experience is that the most significant progress in mastering a
programming language occurs through designing, coding, and testing original
programs. To code and test a Pascal program, you must have access to an editor and
a compiler. Although simple programs written in “‘generic” or “standard” Pascal
may compile successfully on most compilers, at some point in the process of
writing more sophisticated programs it becomes advantageous, if not necessary, to
use the nonstandard features of a particular compiler. For that reason, we have
written this text with exclusive reference to the Turbo Pascal compiler.

xiv PREFACE

¥ Pedagogy

Certain pedagogical beliefs have been kept in mind in writing the text. Among them
are the following:

1.

The best way to learn is by doing. Throughout the text, research activities and
chapter programming exercises based on the program examples encourage
you to use the program example disk that accompanies the text.

The level of understanding of a particular concept that satisfies another
student may not satisfy your curiosity. To address these differences, we have
included optional sections on certain topics. They may be omitted without
loss of continuity. In an additional attempt to address individual differences,
and to challenge gifted students, one or more problems labeled ““Challenge
Exercise” are included in several of the sets of chapter programming
exercises.

Single-concept program examples, or at least those that emphasize a single
new idea, are less confusing and hence more instructive than examples that
illustrate several new ideas. Although the program examples tend to become
larger as the text progresses, we have limited the number of new ideas and/or
syntax elements in each new program example.

In a further attempt to anchor new ideas and concepts to a familiar base,
we bring back one program example, Program PAYROLL, which is intro-
duced in Chapter 4, in newer, more sophisticated versions, in Chapters 5, 6,
7, and 13. Each new version of Program PAYROLL adds flexibility and
power by making use of newly acquired programming tools.

For teaching purposes, simple, ordinary, “little” words are preferable to
fancy, unusual, “‘big” words. In fact, we find in our classes an ever-increasing
percentage of students for whom English is a second language. Struggling
with uncommon words and unwieldy English sentences can be just as tough
a task as mastering programming concepts. This use of simple language does
not result in a “‘watered down” text.

The text is written with first-semester computer science students in mind.
There are places in the text where the temptation to offer an extremely terse
and logically elegant definition or problem solution—the kind that would
delight a good mathematician—is great, but where a less abstract definition or
solution seems to be more appropriate for a beginning programming student.

. We have tried to write with clarity and in adequate detail about programming

logic using Pascal as a vehicle. We have avoided writing a complete Turbo
Pascal reference manual. This text is about programming and problem-
solving; it is not about a compiler.

Twice as many words do not necessarily make an idea or a definition twice as
clear. There is something to be said for the economical and efficient use of
English.

¥ A Note on Chapter 15

Object-oriented programming (OOP) is well established in industry. OOP concepts
provide much of the content of programming journals, and OOP themes have, for
some time, been dominant topics at software development seminars.

END-OF-CHAPTER ACTIVITIES Xv

We have not always found it easy to learn this new way of programming, but the
enthusiasm of our students encourages us. We have discovered that, while objects
(as the word is used in the strict sense of its meaning in the vocabulary of OOP)
aren’t intuitive for died-in-the-wool procedure-oriented programmers, they make
sense to beginning programmers. Objects tend to model the real world as most of us
conceptualize it.

Chapter 15 is not a comprehensive treatment of OOP. It is, rather, an introduc-
tion to some of the underlying principles and structures of object-oriented
programming. We hope that Chapter 15 will motivate you to learn more about an
important new way of programming.

¥ Unit OURSTUFF

¥V ACM/IEEE

Units are fundamentally important in the programming environment of Turbo
Pascal. In addition to the predefined units (Crt, Printer, Dos, and so on),
user-defined units can be of real value to programmers (students and professionals)
as a way to reduce coding time. For those of us who attempt to write object-
oriented programs, user-defined units become essential to the implementation of
inheritance.

Beginning in Chapter 7, we present a user-defined unit, OURSTUFF. Two useful
I/O procedures are included in the initial version of OURSTUFF. Later, in Chapter
10, two routines used in several of the sorting and searching program examples are
added to OURSTUFF. Finally, in Chapter 11, OURSTUFF is expanded to include
several new 1/O routines, a sort procedure, and a search function; these routines are
used extensively to simplify coding in the program examples in Chapters 11
through 15.

We hope that the ongoing development and extensive use of a particular
user-defined unit will persuade you to take advantage of this important program-
ming tool.

The text contents have been examined with reference to the report of the
ACM/IEEE—CS Joint Curriculum Task Force, Computing Curricula 1991. The
report lists 55 knowledge units under 10 subject areas. Taken collectively, these
constitute the common requirements for a four-year undergraduate curriculum in
computer science. The task force makes no attempt to mandate a chronological
ordering of the knowledge units over eight semesters, although some sample
curricula are suggested. This text addresses, at some level, at least 7 of the 10
subject areas and at least 25 of the 55 required knowledge units.

V¥V End-of-Chapter Activities

We make a distinction between the review problems and the chapter exercises that
appear at the end of each chapter. The review problems do not require writing of
original programs, and do not, for the most part, require a significant amount of
coding. The review problems are typically questions about program examples that
occur in the chapter, and are often of the “What if?” variety. They might be useful
as at least partial preparation for a quiz or a test. The chapter exercises, with few

xvi PREFACE

V Thanks

exceptions, are programming exercises that give you an opportunity to implement
the structures and ideas of the chapter. The exercises are not sorted in “‘ascending”
order from easy to difficult. Rather, they tend to follow the sequence of the chapter

sections.

This text and the accompanying program example diskette reflect the valuable
advice and constructive criticism of a great number of our teaching colleagues from
community colleges, liberal arts colleges. and universities across the country. These

colleagues include:

Phil Novinger
Helen Casey
Roger E. Eggen
Paul A. Smith

Michael Fry
Robert Moll

Sheau-Dong Lang
Peter Casey

James Payne

Y. H. Harris Kwong

Phillip R. Bender

Thomas J. Cheatham

Ronald A. Mann
Evelyn W. Speiser
Joseph J. Waters
E. Terry Magel
Andrew Bernat
Mike Michaelson
Paul Shapiro
Robert Sterling
Peggy S. Eaton

Sharon Underwood
Walter Chesbro
Barbara A. Gentry
Timothy Margush
Stephen F. Weiss

The Florida State University
Sam Houston State University
University of North Florida

South Puget Sound Community
College

Lebanon Valley College

The University of Massachusetts,
Ambherst

University of Central Florida
Central Oregon Community College
Kellogg Community College

State University of New York,
Fredonia

Marquette University

Middle Tennessee State University
University of Louisville

Glendale Community College
Santa Rosa Junior College
Kentucky State University

The University of Texas at El Paso
Palomar College

Newton Centre MA

Tidewater Community College

University of New Hampshire and
Plymouth State University

Livingston University
Santa Rosa Junior College
Parkland College

The University of Akron

The University of North Carolina at
Chapel Hill

Murat M. Tanik
Curtis R. Bring
Jimmie M. Purser
Ingrid Russell
Marguerite R. Summers
Michael Pelle

John Stocksen
Stephen C. Solosky
Charles M. Williams
Norman H. Liebling
Carl Maltz

THANKS Xvil

Southern Methodist University
Moorhead State University
Millsaps College

University of Hartford
Sangamon State Universtiy
Berkshire Community College
Kansas City Community College
Nassau Community College
Georgia State University

San Jacinto College

California State University, Long
Beach

All of the material has been tested and refined in our classrooms at Western New
England College and Massachusets Bay Community College. The software and
expanded documentation for the model processor of Chapter 1 is also being used at
the Florida Center for Instructional Technology, University of South Florida. We are
in great debt to our students and teaching colleagues for the many improvements
they have contributed to the text and software you are about to use.

Finally, we wish to thank the editorial staff at West Educational Publishing,
including Sharon Adams, Peter Gordon, Lucy Paine Kezar, and Jay Ricci, for their
assistance and encouragement, and Amy Gabriel, production editor, for her
painstaking attention to detail in putting the whole thing together.

We wish you great success and happy computing!

Richard E. Johnson and David M. Keil

August 1994

FVVVVVVVVVVVVVVVVVVYVYVVYYY WY

Introduction to
Computer
Programming using
Turbo Pascal

[VVVVVVVVVVVVVVVVVVVVVVVV‘

Contents

V¥ CHAPTER 1

Vv CHAPTER 2

A Model Computer, Machine Language Programming,
and Algorithm Design 1

Introduction 2

1.1 A Model Computer for Numeric Problem-Solving 3
1.2 A Set of Operations 7

1.3 The Fetch-Execute Cycle 10

1.4 Data Statements 16

1.5 Flowcharts, Decisions, and Branch Structures 17
1.6 Loop Structures, Counters, and Sentinel Values 22
1.7 The Binary Number System (Optional) 29

1.8 Storing Integers in Memory (Optional) 35
Summary 39

Review Problems 40

Exercises 43

Introduction to the Pascal Language 49

Introduction 50

2.1 Programming Languages 50

2.2 Describing a Programming Language 54

2.3 Shifting to Pascal: Input, Output, and Assignment 56
2.4 Order of Precedence of Arithmetic Operations 64
2.5 The Arithmetic Operators +, —, *, DIV, and MOD 66
2.6 ASCII Characters and the Data Types Char and String 67
2.7 Redirecting Program Output: Text Files 73

2.8 Viewing Screen Output 75

Summary 76

Review Problems 77

Exercises 78

vii

viii CONTENTS

¥ CHAPTER 3 The Data Type Real 83

Introduction 84

3.1 What Is a Real Number? 84

3.2 Declaring and Using Real Data 85

3.3 The Arithmetic Operator / 91

3.4 Declaring Constants 92

3.5 Formatting Output 94

3.6 Some Standard Arithmetic Functions 97
3.7 How Real Numbers Are Stored in RAM (Optional) 100
Summary 105

Review Problems 106

Exercises 107

¥ CHAPTER 4 Program Design, Debugging, and a Peek at
Procedures 111

Introduction 112
4.1 Program Documentation 112
4.2 Consistency in Style 114

4.3 Top-Down Design and Stepwise Refinement: A Method for
Program Development 116

4.4 Modular Program Design: A First Look at Procedures 122
4.5 The Turbo Debugger and Windows (Optional) 126
Summary 131

Review Problems 131

Exercises 133

¥ CHAPTER 5 Pascal Decision Statements 135

Introduction 136

5.1 Relational and Logical Operators and Boolean Expressions 136
5.2 IF...THEN ... ELSE Statements 141

5.3 Types of Errors and Error Messages 145

5.4 Boolean Variables 147

5.5 Compound Statements 150

5.6 Nested IF ... THEN ... ELSE Statements 153
5.7 The CASE Statement 156

5.8 Logic Gates and Binary Addition (Optional) 160
Summary 165

Review Problems 166

Exercises 168

v CHAPTER 6

v CHAPTER 7

Vv CHAPTER 8

v CHAPTER 9

CONTENTS

Pascal Loop Statements 173

Introduction 174

6.1 Scalar and Ordinal Data Types 174

6.2 FOR Loops 176

6.3 WHILE Loops 185

6.4 REPEAT Loops 190

6.5 Comparing the Three Loop Statements 198
6.6 More About Text Files 199

6.7 Nested Loops 208

6.8 Random Number Generation (Optional) 211
Summary 219

Review Problems 220

Exercises 221

Procedures, Parameters, and Local Variables 229

Introduction 230

7.1 Value and Variable Parameters 230

7.2 Local Variables, Scope, and Nested Procedures 243
7.3 Turbo Pascal Units 253

Summary 261

Review Problems 261

Exercises 263

Functions and Recursion 269
Introduction 270

8.1 The Difference Between a Function and a Procedure 270

8.2 Functions of Various Data Types 276
8.3 Indexing a String 282

8.4 String Functions and Procedures 285
8.5 An Introduction to Recursion 290
Summary 300

Review Problems 300

Exercises 302

Arrays and Other User-Defined Data Types 307
Introduction 308

9.1 The Type Declaration 308

9.2 Enumerated Types 309

9.3 Subrange Types 313

X CONTENTS

Vv CHAPTER 10

Vv CHAPTER 11

V¥ CHAPTER 12

9.4 Declaring and Manipulating One-Dimensional Arrays
9.5 A File Maintenance Program 332

9.6 Multidimensional Arrays 337

Summary 345

Review Problems 345

Exercises 346

Sorting and Searching Arrays 351

Introduction 352

10.1 Timing an Instruction Sequence 352

10.2 A Program to Compare Sort Algorithms 355
10.3 The Bubble Sort 359

10.4 The Shell Sort 362

10.5 The Quicksort (Optional) 369

10.6 Memory Management and the Stack (Optional) 374

10.7 A Program to Compare Search Algorithms 376
10.8 The Linear Search 380

10.9 The Binary Search 383

Summary 387

Review Problems 387

Exercises 389

Building a Larger Program 393

Introduction 394

11.1 The Include Directive, .LIB Files, and a Driver 394
11.2 The Window Procedure 397

11.3 Beefing Up OURSTUFF 404

11.4 Using Stubs in Top-Down Design 407

11.5 Putting It All Together 414

Summary 425

Review Problems 425

Exercises 426

Sets (Optional) 429

Introduction 430

12.1 Data Structures and Abstract Data Types 430
12.2 Set Notation and Set Operations 430

12.3 Pascal Implementation of Sets 433

12.4 Two Programs that Use Sets 440

317

CONTENTS

12.5 Memory Allocation for a Set Variable (Optional) 448
Summary 450

Review Problems 451

Exercises 452

V¥ CHAPTER 13 Records and Files 455

Introduction 456

13.1 Records 456

13.2 Arrays of Records 461

13.3 Typed Files and Files of Records 476
13.4 Maintaining a File of Records 500
Summary 512

Review Problems 512

Exercises 514

V¥ CHAPTER 14 Pointer Variables and Dynamic Structures 519

Introduction 520

14.1 Dynamic Variables and Pointers 520

14.2 Allocating and Deallocating Memory 522
14.3 Pointers and the Heap 524

14.4 Linked Lists Using Pointers 529

14.5 Binary Trees 548

Summary 572

Review Problems 573

Exercises 574

V¥ CHAPTER 15 Introduction to Object-Oriented Programming 579

Introduction 580

15.1 Why Have Another Revolution? 580

15.2 What Is an Object? 581

15.3 Adding Capabilities to an Object Class 585
15.4 Some Graphics Objects 587

15.5 A Linked List Object 593

15.6 Inheritance: Passing Characteristics from One Type to
Another 598

15.7 Virtual Methods: Changing How Descendants Behave 603
Summary 611

Review Problems 612 ¥

Exercises 612

xii CONTENTS

Appendices

MS-DOS Essentials A-1

Model Processor Programming B-1

Turbo Pascal Reserved Words and Standard Identifiers C-1
Using Turbo Pascal D-1

Solutions to Odd-Numbered Chapter Review Problems E-1
Glossary F-1

Unit OURSTUFF G-1

ASCII Table H-1

TIommon®»

Index I-1

