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Preface

This text and the accompanying program disk are based on ideas and materials
originally developed for two distinct but overlapping one-semester courses, Intro-
duction to Computer Science and Pascal Programming.

Different views exist about where the boundary lies between computer science
and computer programming, and to what extent the two subjects overlap. We
believe that to lay claim to the title “computer scientist” you must be reasonably
competent at writing programs in some language. We also believe that to program
well in any language you should have a rudimentary knowledge of the architecture
and mathematics of a general-purpose computer.

V¥V A Note on Chapter 1

Chapter 1 describes a simplified computer and a ten-instruction assembly language
for it. We feel that this introduction to the basic operation of a digital computer will
enrich the subsequent study of programming in a high-level language (in this case,
Pascal). When a compiled version of one of your programs executes, you will have
a better idea of what occurs at the machine level. Some of the mystery of the
“magic box™ will have been revealed. The program example diskette that
accompanies the text includes software to write, assemble, and run programs
written in the assembly language of Chapter 1. Appendix B describes the use of this
software.

Chapter 1 has a second objective. The three fundamental control structures of all
modern languages, the sequence, the decision (branch), and the loop, are introduced
using machine-level programming examples unencumbered by the syntax require-
ments of Pascal. When the IF...THEN...ELSE statement and the Pascal loops
(FOR, WHILE, REPEAT) are introduced in later chapters, the concepts of
branching and looping will be familiar to you; only the syntax will be new.

¥ Why Turbo Pascal?

Our classroom experience is that the most significant progress in mastering a
programming language occurs through designing, coding, and testing original
programs. To code and test a Pascal program, you must have access to an editor and
a compiler. Although simple programs written in “‘generic” or “standard” Pascal
may compile successfully on most compilers, at some point in the process of
writing more sophisticated programs it becomes advantageous, if not necessary, to
use the nonstandard features of a particular compiler. For that reason, we have
written this text with exclusive reference to the Turbo Pascal compiler.
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¥ Pedagogy

Certain pedagogical beliefs have been kept in mind in writing the text. Among them
are the following:

1.

The best way to learn is by doing. Throughout the text, research activities and
chapter programming exercises based on the program examples encourage
you to use the program example disk that accompanies the text.

The level of understanding of a particular concept that satisfies another
student may not satisfy your curiosity. To address these differences, we have
included optional sections on certain topics. They may be omitted without
loss of continuity. In an additional attempt to address individual differences,
and to challenge gifted students, one or more problems labeled ““Challenge
Exercise” are included in several of the sets of chapter programming
exercises.

Single-concept program examples, or at least those that emphasize a single
new idea, are less confusing and hence more instructive than examples that
illustrate several new ideas. Although the program examples tend to become
larger as the text progresses, we have limited the number of new ideas and/or
syntax elements in each new program example.

In a further attempt to anchor new ideas and concepts to a familiar base,
we bring back one program example, Program PAYROLL, which is intro-
duced in Chapter 4, in newer, more sophisticated versions, in Chapters 5, 6,
7, and 13. Each new version of Program PAYROLL adds flexibility and
power by making use of newly acquired programming tools.

For teaching purposes, simple, ordinary, “little” words are preferable to
fancy, unusual, “‘big” words. In fact, we find in our classes an ever-increasing
percentage of students for whom English is a second language. Struggling
with uncommon words and unwieldy English sentences can be just as tough
a task as mastering programming concepts. This use of simple language does
not result in a “‘watered down” text.

The text is written with first-semester computer science students in mind.
There are places in the text where the temptation to offer an extremely terse
and logically elegant definition or problem solution—the kind that would
delight a good mathematician—is great, but where a less abstract definition or
solution seems to be more appropriate for a beginning programming student.

. We have tried to write with clarity and in adequate detail about programming

logic using Pascal as a vehicle. We have avoided writing a complete Turbo
Pascal reference manual. This text is about programming and problem-
solving; it is not about a compiler.

Twice as many words do not necessarily make an idea or a definition twice as
clear. There is something to be said for the economical and efficient use of
English.

¥ A Note on Chapter 15

Object-oriented programming (OOP) is well established in industry. OOP concepts
provide much of the content of programming journals, and OOP themes have, for
some time, been dominant topics at software development seminars.
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We have not always found it easy to learn this new way of programming, but the
enthusiasm of our students encourages us. We have discovered that, while objects
(as the word is used in the strict sense of its meaning in the vocabulary of OOP)
aren’t intuitive for died-in-the-wool procedure-oriented programmers, they make
sense to beginning programmers. Objects tend to model the real world as most of us
conceptualize it.

Chapter 15 is not a comprehensive treatment of OOP. It is, rather, an introduc-
tion to some of the underlying principles and structures of object-oriented
programming. We hope that Chapter 15 will motivate you to learn more about an
important new way of programming.

¥ Unit OURSTUFF

¥V ACM/IEEE

Units are fundamentally important in the programming environment of Turbo
Pascal. In addition to the predefined units (Crt, Printer, Dos, and so on),
user-defined units can be of real value to programmers (students and professionals)
as a way to reduce coding time. For those of us who attempt to write object-
oriented programs, user-defined units become essential to the implementation of
inheritance.

Beginning in Chapter 7, we present a user-defined unit, OURSTUFF. Two useful
I/O procedures are included in the initial version of OURSTUFF. Later, in Chapter
10, two routines used in several of the sorting and searching program examples are
added to OURSTUFF. Finally, in Chapter 11, OURSTUFF is expanded to include
several new 1/O routines, a sort procedure, and a search function; these routines are
used extensively to simplify coding in the program examples in Chapters 11
through 15.

We hope that the ongoing development and extensive use of a particular
user-defined unit will persuade you to take advantage of this important program-
ming tool.

The text contents have been examined with reference to the report of the
ACM/IEEE—CS Joint Curriculum Task Force, Computing Curricula 1991. The
report lists 55 knowledge units under 10 subject areas. Taken collectively, these
constitute the common requirements for a four-year undergraduate curriculum in
computer science. The task force makes no attempt to mandate a chronological
ordering of the knowledge units over eight semesters, although some sample
curricula are suggested. This text addresses, at some level, at least 7 of the 10
subject areas and at least 25 of the 55 required knowledge units.

V¥V End-of-Chapter Activities

We make a distinction between the review problems and the chapter exercises that
appear at the end of each chapter. The review problems do not require writing of
original programs, and do not, for the most part, require a significant amount of
coding. The review problems are typically questions about program examples that
occur in the chapter, and are often of the “What if?” variety. They might be useful
as at least partial preparation for a quiz or a test. The chapter exercises, with few
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V Thanks

exceptions, are programming exercises that give you an opportunity to implement
the structures and ideas of the chapter. The exercises are not sorted in “‘ascending”
order from easy to difficult. Rather, they tend to follow the sequence of the chapter

sections.
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