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Here as a child I watched my mom blow soap bubbles. My dad also encouraged
all my interests. This book is dedicated to them with admiration.

Photograph courtesy of the Morgan family; taken by the author’s grandfather,
Dr. Charles W. Selemeyer



Preface

Singular geometry governs the physical universe: soap bubble clusters meeting
along singular curves, black holes, defects in materials, chaotic turbulence, crys-
tal growth. The governing principle is often some kind of energy minimization.
Geometric measure theory provides a general framework for understanding such
minimal shapes, a priori allowing any imaginable singularity and then proving that
only certain kinds of structures occur.

Jean Taylor used new tools of geometric measure theory to derive the singular
structure of soap bubble clusters and sea creatures, recorded by J. Plateau over a
century ago (see Section 13.9). R. Schoen and S.-T. Yau used minimal surfaces in
their original proof of the positive mass conjecture in cosmology, recently extended
- to a proof of the Riemannian Penrose Conjecture by H. Bray. David Hoffman
and his collaborators used modern computer technology to discover some of the
first new complete embedded minimal surfaces in a hundred years (Figure 6.1.3),
some of which look just like certain polymers. Other mathematicians are now
investigating singular dynamics, such as crystal growth. New software computes
crystals growing amidst swirling fluids and temperatures, as well as bubbles in
equilibrium, as on the front cover of this book. (See Section 16.8.)

In 2000, Hutchings, Morgan, Ritoré, and Ros announced a proof of the Double
Bubble Conjecture, which says that the familiar double soap bubble provides the
least-area way to enclose and separate two given volumes of air. The planar case
was proved by my 1990 Williams College NSF “SMALL” undergraduate research
Geometry Group [Foisy et al.]. The case of equal volumes in R® was proved by
Hass, Hutchings, and Schlafly with the help of computers in 1995. The general R3
proof has now been generalized to R" by Reichardt. There are partial results in
spheres, tori, and Gauss space, an important example of a manifold with density
(see Chapters 18 and 19).

This little book provides the newcomer or graduate student with’an illustrated
introduction to geometric measure theory: the basic ideas, terminology, and results,
It developed from my one-semester course at MIT for graduate students with a
semester of graduate real analysis behind them. I have included a few fundamental
arguments and a superficial discussion of the regularity theory, but my goal is
merely to introduce the subject and make the standard text. Geometric Measure
Theory by H. Federer. more accessible.

Other good references include L. Simon’s Lectures on Geometric Measure
Theory. E. Guisti’s Minimal Surfaces and Functions of Bounded Variation,
R. Hardt and Simon’s Seminar on Geometric Measure Theory, Simon’s Sur-
vey Lectures on Minimal Submanifolds, J. C. C. Nitsche’s Lectures on Minimal
Surfaces (now available in English). R. Osserman’s updated Survey of Minimal

vii



viii Preface

Surfaces, H. B. Lawson’s Lectures on Minimal Submanifolds, A. T. Fomenko’s
books on The Plateau Problem, and S. Krantz and H. Parks’s Geometric Integration
Theory. S. Hildebrandt and A. Tromba offer a beautiful popular gift book for your
friends, reviewed by Morgan [14, 15]. J. Brothers and also Sullivan and Morgan
assembled lists of open problems. There is an excellent Questions and Answers
about Area Minimizing Surfaces and Geometric Measure Theory by F. Almgren
[4]. who also wrote areview [5] of the first edition of this book. The easiest starting
place may be the Monthly article “What is a Surface?” {Morgan 24].

It was from Fred Almgren, whose geometric perspective this book attempts
to capture and share, that I first Jearned geometric measure theory. I thank many
graduate students for their interest and suggestions, especially Benny Cheng, Gary
Lawlor, Robert Mclntosh, Mohamed Messaoudene, and Marty Ross. I also thank
typists Lisa Court, Louis Kevitt, and Marissa Barschdorf. Jim Bredt first illustrated
an article of mine as a member of the staff of Link, a one-time MIT student
newspaper. I feel very fortunate to have him with me again on this book. I am
grateful for help from many friends, notably Tim Murdoch. Yoshi Giga and his
students, who prepared the Japanese translation, and especially John M. Sullivan.
I would like to thank my new editor, Lauren Schultz, and my original editor and
friend Klaus Peters. A final thank you goes to all who contributed to this book
at MIT. Rice, Stanford, and Williams. Some support was provided by National
Science Foundation grants, by my Cecil and Ida Green Career Development Chair
at MIT, and by my Dennis Meenan and Webster Atwell chairs at Williams.

This fourth edition includes updated material and references, recent results on
planar soap films (Chapter 13), a new Chapter 18 on Manifolds with Density and
Perelman’s Proof of the Poincaré Conjecture and a new Chapter 19 on Double Bub-
bles in Spheres, Gauss Space, and Tori. Gauss space, defined as Euclidean space
with Gaussian density, long studied by probabilists, appears along with general
manifolds with density in Perelman’s original 2003 paper on the Poincaré Con-
Jecture. The proof of the Double Bubble Conjecture in spheres seems inextricably
linked to its proof in Gauss space (see Chapter 19).

Bibliographic references are simply by author’s name, sometimes with an iden-
tifying numeral or section reference in brackets. Following a useful practice of
Nitsche [2], the bibliography includes cross-references to each citation.

Frank Morgan
Williamstown, MA
Frank.Morgan@williams.edu
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Geometric Measure
Theory

Geometric measure theory could be described as differential geometry, generalized
through measure theory to deal with maps and surfaces that are not necessarily
smooth, and applied to the calculus of variations. It dates from the 1960 foun-
dational paper of Herbert Federer and Wendell Fleming on “Normal and Integral
Currents,” recognized by the 1986 AMS Steele Prize for a paper of fundamental
or lasting importance, and earlier and contemporaneous work of L. C. Young [1, 2],
E. De Giorgi [1, 3, 4], and E. R. Reifenberg [1-3] (see Figure 1.0.1). This chapter
provides a rough outline of the purpose and basic concepts of geometric measure
theory. Later chapters take up these topics more carefully.

1.1 Archetypical Problem Given a boundary in R", find the surface of
least area with that boundary. See Figure 1.1.1. Progress on this problem depends
crucially on first finding a good space of surfaces to work in.

1.2 Surfaces as Mappings Classically, one considered only two-dimen-
sional surfaces, defined as mappings of the disc. See Figure 1.2.1. Excellent refer-
ences include J. C. C. Nitsche’s Lectures on Minimal Surfaces [2], now available in
English, R. Osserman’s updated Survey of Minimal Surfaces, and H. B. Lawson’s
Lectures on Minimal Submanifolds. It was not until about 1930 that J. Douglas and
T. Rado surmounted substantial inherent difficulties to prove that every smooth
Jordan curve bounds a disc of least mapping area. Almost no progress was made
for higher-dimensional surfaces (until, in a surprising turnaround, B. White [1]
showed that for higher-dimensional surfaces the geometric measure theory solution
actually solves the mapping problem too).
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Figure 1.0.1. Wendell Fleming, Fred Almgren, and Ennio De Giorgi, three of the founders
of geometric measure theory, at the Scuola Normale Superiore, Pisa, summer, 1965; and
Fleming today. Photographs courtesy of Fleming.
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Figure 1.2.1. Surface realized as a mapping, f, of the disc.

Along with its successes and advantages, the definition of a surface as a mapping
has certain drawbacks (see Morgan [24]):

1. There is an inevitable a priori restriction on the types of singularities that
can occur;
2. There is an a priori restriction on the topological complexity; and

3. The natural topology lacks compactness properties.

The importance of compactness properties appears in the direct method described
in the next section.

1.3 The Direct Method The direct method for finding a surface of least
area with a given boundary has three steps.

1. Take a sequence of surfaces with areas decreasing to the infimum.
2. Extract a convergent subsequence.
3. Show that the limit surface is the desired surface of least area.

Figures 1.3.1-1.3.4 show how this method breaks down for lack of compactness
in the space of surfaces as mappings, even when the given boundary is the unit

Figure 1.3.1. A surface with areasw + 1.
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Figure 1.3.2. A surface with area v + §.

Figure 1.3.3. A surface witharea 7 + 5.

circle. By sending out thin tentacles toward every rational point, the sequence
could include all of R? in its closure!

1.4 Rectifiable Currents An alternative to surfaces as mappings is
provided by rectifiable currents, the m-dimensional, oriented surfaces of geo-
metric measure theory. The relevant functions f: R™ — R" need not be smooth
but merely Lipschitz; that is,

[ f(x) = fnI <Clx—yi,

for some “Lipschitz constant” C.

Fortunately, there is a good m-dimensional measure on R", called Hausdorff
measure, ™. Hausdorff measure agrees with the classical mapping area of an
embedded manifold, but it is defined for all subsets of R”.

A Borel subset B of R” is called (™, m) rectifiable if B is a countable union
of Lipschitz images of bounded subsets of R™, with ##™(B) < oco. (As usual,
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| L)

Figure 1.3.4. A surface with area 7 + 4.

we will ignore sets of S#™ measure 0.) That definition sounds rather general, and
it includes just about any “m-dimensional surface” I can imagine. Nevertheless,
these sets will support a kind of differential geometry: for example, it turns out
that a rectifiable set B has a canonical tangent plane at almost every point.

Finally, a rectifiable current is an oriented rectifiable set with integer multiplici-
ties, finite area, and compact support. By general measure theory, one can integrate
a smooth differential form ¢ over such an oriented rectifiable set S, and hence view
S as a current; that is, a linear functional on differential forms,

gar—)fqo.
S

This perspective yields a new natural topology on the space of surfaces, dual to an
appropriate topology on differential forms. This topology has useful compactness
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properties, given by the fundamental compactness theorem in Section 1.5. Viewing
rectifiable sets as currents also provides a boundary operator 3 from m-dimensional
rectifiable currents to (m — 1)-dimensional currents, defined by

(35) () = S(dy),

where dyp is the exterior derivative of ¢. By Stokes’s theorem, this definition
coincides with the usual notion of boundary for smooth, compact, oriented mani-
folds with boundary. In general, the current 3S is not rectifiable, even if S is
rectifiable.

1.5 The Compactness Theorem Let ¢ be a positive constant. Then the
set of all m-dimensional rectifiable currents T in a fixed large closed ball in R",
such that the boundary 9T is also rectifiable and such that the area of both T and
dT is bounded by c, is compact in an appropriate weak topology.

1.6 Advantages of Rectifiable Currents Notice that rectifiable
currents have none of the three drawbacks mentioned in Section 1.2. There is
certainly no restriction on singularities or topological complexity. Moreover, the
compactness theorem provides the ideal compactness properties. In fact, the direct
method described in Section 1.3 succeeds in the context of rectifiable currents. In
the figures of Section 1.3, the amount of area in the tentacles goes to 0. Therefore,
they disappear in the limit in the new topology. What remains is the disc, the
desired solution.
All of these results hold in all dimensions and codimensions.

1.7 The Regularity of Area-Minimizing Rectifiable Currents
One serious suspicion hangs over this new space of surfaces: The solutions they
provide to the problem of least area, the so-called area-minimizing rectifiable cur-
rents, may be generalized objects without any geometric significance. The follow-
ing interior regularity results allay such concerns. (We give more precise statements
in Chapter 8.)

1. A two-dimensional area-minimizing rectifiable current in R3 is a smooth
embedded manifold.

2. For m < 6, an m-dimensional area-minimizing rectifiable current in R"+1 jg
a smooth embedded manifold.

Thus, in low dimensions the area-minimizing hypersurfaces provided by
geometric measure theory actually turn out to be smooth embedded manifolds.
However, in higher dimensions, singularities occur, for geometric and not merely
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technical reasons (see Section 10.7). Despite marked progress, understanding such
singularities remains a tremendous challenge.

1.8 More General Ambient Spaces Basic geometric measure theory
extends from R” to Riemannian manifolds via C' embeddings in R" or Lipschitz
charts. Ambrosio and Kirchheim among others have been developing an intrinsic
approach to geometric measure theory in certain metric spaces.



