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Foreword

This volume contains the complete texts of the fifteen addresses to the
Symposium on Nonlinear Functional Analysis, held in Madison on April 12-14,
1971, under the sponsorship of the Mathematics Research Center, University
of Wisconsin. There were six sessions covering the following areas: I. Topo-
logical degree and bifurcation, II. Monotonicity, I1I. Convexity, IV. Integral
equations, V. Evolution equations, and VI. Partial differential equations. The
sessions were chaired by:

Professor Erich H. Rothe, University of Michigan

Professor Eduardo H. Zarantonello, Mathematics Research Center,
University of Wisconsin

Professor Victor Klee, University of Washington

Professor John Nohel, University of Wisconsin

Professor Jiirgen K. Moser, New York University

Professor Charles C. Conley, University of Wisconsin

The program committee consisted of Professors P. H. Rabinowitz, R. E. L.
Turner, and L. Rall, with the editor as the chairman. Mrs. Gladys Moran was
the symposium secretary, and it is to her experience, intelligent dedication,
and inexhaustable enthusiasm that this conference owed its perfect organiza-
tion. The preparation of the manuscripts for publication was in the able
hands of Mrs. Dorothy Bowar. To them both I wish to extend my apprecia-
tion for their invaluable assistance.

Eduardo H. Zarantonello



Preface

Linearity is such a deep-seated notion among mathematicians that any out-
side venture, especially in functional analysis, is immediately qualified as
“nonlinear,” as if linearity were the normal way of life in mathematics. Such
ventures beyond the linear are seldom strictly nonlinear, for they also apply
to linear situations, and more often than not it is there where they are at
their best, if only a banal best. Strictly speaking, it is only in a context in
which linearity makes sense that one can speak of nonlinearity. As the out-
lying field of nonlinearity is being explored and developed, it is becoming
clear that linearity is just one of many parcels of mathematical territory, the
first to be settled and at that a thin and narrow one, and that the tribute
paid to it is no longer unquestionable. Hopefully, the term nonlinear will dis-
appear from analysis, to be replaced by a host of new names making for a
more precise and representative nomenclature, and one can foresee the time—
not so far off—when linearity rather than its absence will have to be qualified.

Two of the main ideas in the contemporary scene of functional analysis—as
distinguished from linear functional analysis—are topological degree and
monotonicity. Topological degree, in the form of the homotopy invariance
of the topological index, has been a prime source of existence proofs since
its formulation by Schauder and Leray in 1934. It is also an important
instrument in bifurcation theory. However, the requirement in existence
questions that the operators involved be compact considerably restricts its
domain of application. This gap was partially filled by monotone operators
which need be neither compact nor continuous, and which originated in 1960
out of the need to have something in higher dimensions corresponding to
increasing functions on the real line. Monotonicity belongs to the lineage of
ideas started by Picard’s successive approximations and later represented by
the Banach contraction principle, but it goes a good deal beyond. The theory
of convex functionals and duality, now being vigorously pursued, falls partly
within its realm through the fact that subgradients of convex functionals are
monotone mappings. Of course, many other techniques are used in functional
analysis. Among these one should mention traditional ‘“hard” analysis, whose
role in bringing specific problemsinto the fold of general ideas is permanently
assured in this field. Indeed, it is by means of its sophisticated techniques
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PREFACE

that such essentials as a priori bounds, estimates, coerciveness, contractive-
ness, and monotonicity are established.

The papers presented in this volume strongly reflect the above-mentioned
tendencies in functional analysis. We shall briefly categorize them within
such context: L. Nirenberg presents an extension of Leray-Schauder degree
and gives an application to a nonlinear elliptic boundary value problem.
P. H. Rabinowitz applies degree theory to prove the existence of global con-
tinua of solutions of nonlinear eigenvalue problems. Further results about
continua of solutions are obtained by R. E. L. Turner using the notion of
transversality. K. Kirchgassner shows how variational structure can be used
to study some local questions in bifurcation theory.

A large number of papers touch on the notion of monotone operators: H.
Brezis presents a brief survey of monotonicity theory, discusses the maxi-
mality of the sum of maximal monotone operators, and gives applications
to partial differential equations. M. G. Crandall offers a nonlinear version of
the Hille-Yosida theorem. Integral equations of the Hammerstein and Urysohn
type are the subject of F. E. Browder’s article. J. L. Lions gives an extension
of boundary layer theory to variational inequalities of elliptic, parabolic, and
hyperbolic type. A version of the penalty method for the Navier-Stokes
equations is presented by H. Fujita. Three communications deal with con-
vexity: J. J. Moreau discusses various types of weak solutions for minimizing
problems in the spirit of duality theory for convex functionals. The duals of
convex integral functionals constructed out of one-parameter families of
convex functionals are studied in the article by R. T. Rockafellar. E. H.
Zarantonello takes up the study of projections on convex sets in Hilbert
space, and develops a spectral theory for a class of operators not necessarily
linear, extending the classical one for self-adjoint linear operators.

Analysis in its more classical form is represented by three papers: By use of
the maximum principle, J. Serrin obtains a priori estimates for gradients of
solutions of partial differential equations of parabolic and elliptic type. P. D.
Lax discusses recent developments in conservation laws, and J. J. Levin and
D. F. Shea investigate the asymptotic behavior of the solutions of certain
nonlinear integral equations of Volterra type.

Eduardo H. Zarantonello
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Generalized Degree and Nonlinear Problems

L. NIRENBERG

§1. In this talk, which is based on [6], we will illus-
trate the use of some topological techniques in solving non-
linear problems. To start with a simple and well known ex-
ample, let T be a continuous mapping of the closed unit
ball B in RY into RA™ - we wish to solve the equation

T(x) =0 .

The topological techniques yield conditions on the boundary
values Ty of T which ensure that for every extension T

of Ty, inside B the equation T(x) = 0 is always solvable.
Assume that To(x) # 0 on 9B, then one has the following
elementary but basic result expressed in terms of the normal -
izde*d map y(X) = To(x)/ITo(x)l mapping 8B = s4-! into

Sa™ e,

Proposition. A necessary and sufficient condition that for
every extension T of Ty the equation T(x) = 0 is always
solvable is that the homotopy class of | be nontrivial

This theorem yields useful results only in case d*ﬁ d.
If d¥*=d the homotopy class of | being nontrivial means that
the degree of the map ¢, i.e., the number of times the image
sphere is covered (counted algebraically), is different from
zero, This number v is also equal to the degree of the map
T at the origin in the image space, i.e. the number of times

1



L. NIRENBERG

the origin is covered (counted algebraically).

Consider now an infinite dimensional Banach space
X and a continuous map T of B, the closed unit ball in X,
into X, with I - T =a compact operator K. The Leray-
Schauder theory, which has been one of the most useful tech-
niques in attacking nonlinear problems, is a generalization
of the preceding remarks to this situation (B may be the
closure of any open set in X ). If Tp(x)# 0, where T
= Tl. B’ then the mapping T has, again, an integral valued
degree v at the origin; if v # 0 then T(x) = 0 is solvable
in B. The degree v depends only on T; , in fact only on
the homotopy class of Ty within the class of operators such
that I - ig) is compact and TO(x) # 0 on §B.

If the range of T 1is contained within a linear sub-
space Y of X, Y # X, then the degree v of T at the
origin is necessarily zero - since it is the same for all points
in a neighbourhood of the origin and, at a point off Y, and
thus not in the range of T , it vanishes. In this lecture we
shall describe an extension of the Leray-Schauder theorem
to such a situation and an application to a nonlinear elliptic
boundary value problem. In recent years extensions of the
Leray-Schauder theory have been made in various directions.
The result presented here (and in [6])is part of a more general
development (see [7], [3], [1], [2])-

Consider a mapping T : B-Y C X as above, with
I-T=K compact, T(x)#0 on 9B, and Y a closed sub-
space having finite codimension i, We wish to present a
condition on TO =0 IaB to ensure that the equation T(x) = 0
is solvable in B for any extension T of T inside B -
of the form I - compact, and having range in Y. Maps Ty
of 8B into Y with this property are called "essential".
‘Whether TO is essential or not depends only on its homo;
topy class (always of the form I-compact) of maps into Y
=Y \{0}. For Y =X this is proved in Granas [4], Theorem
22, and the proof is easily extended for any subspace Y.
For T =1 - K the compact operator K may be approximated
by one with finite dimensional range and hence, as one
easily sees, the operator T; may be deformed within its
homotopy class to an operator of the form I - Kl , mapping
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mapping §B into Y, with Kl mapping into a finite dimen-
sional space. Thus if we write X as a directed sum

X=Y®Z, dim Z=1,
so that any vector x in X has the unique decomposition
Xx=y+z, with y ¢ Y, ze Z, we may suppose that Ty has
the form

To(x) = T

(%),

0(y+z):y+z-Kl(x)=y-K

2
where K, is a map of 9B into a finite dimensional subspace
V of Y. Decomposing Y as a direct sum

Y=W @V,

with Wl a closed linear subspace of Y, so that any x ¢ X
now has the unique decomposition x =y + z = wytv+z,
wpe W, veV, z ¢ Z , we have

To(x) =w

+v - KZ(X) =w, - K3(x)

1 1

where the range of K3 isin V.
Since To(x) # 0 for x ¢ 9B we see that K3(v+z)
#0 for v+ z e 8B. Hence we may deform TO via the de-
formation
TOt(X) = TOt(W +v+z) = w

- K3(tw +v+z), 0 <t<l

1 | 1

to the map

(x) =w, - K3(V+Z)

To1 ]

lying in the same homotopy class. We may therefore suppose
that T, has this very special form, namely, with V&2 =W
so that x = w] + w, we may suppose that

To(x) = To(wl + w) = w, + & (w)
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where & 1is a continuous map of the closed unit ball in W
into the linear subspace V of W . We shall express the

condition for T, to be "essential" in terms of the map &
which does not vanish for HwH =1. Suppose dimW =d ,

dim V=d*,d-d*¥=1i; set

(1) ¥ (w) = —H%T for “W“ =i .

Thendvxelmay consider ¥ as a mapping of the sphere Sd'l
fe S° =%,

Theorem 1. TO is "essential" if and only if the map ¥
has nontrivial stable homotopy (defined by suspension).

A proof is given in [6]; in proving sufficiency one
first approximates I - T by an operator mapping into a finite
dimensional space - reducing the problem to that for finite
dimensional X . In this case one then applies the Proposi-

To(x)
tion above by showing that the homotopy class of IT—O(XT[ .

mapping the unit sphere in X into that in Y , is obtained
from the mapping ¥ by repeated suspensions.

§2. The application that we present grew out of a result
of Landesman and Lazer [5] and we shall first describe their
result in a slightly restricted form. It concerns a nonlinear
elliptic boundary value problem for a real function u in a
bounded domain § C R with smooth boundary I' . (All
functions, coefficient of equations, etc., are assumed to be
real and smooth in §.) Let L be a linear formally self-
adjoint elliptic second order operator in 9§ and consider the
problem

(2) Lu = f(x) - g(u) in 8§, u=0 on I',

with f a given (smooth) function; g(u) is continuous and
has limits
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lim g(u) = g(£o)
u—=+00

with

(3) g(-%) < g(u) <g(«) .

Assume that ker L, i.e. the space of solutions of
(4) Iu=0 in 8, u=0 on I,

is one dimensional - spanned by the function w . Then from
(3) one easily derives a necessary condition for solvability
of (2); taking L2 scalar product (, ) of (2) with w we
find

(f - g,w)=(Lu,w) = (u,Lw) =0
and using the bounds (3) we obtain the necessary condition

(5) g(-®) [ wdx+g(® [ wdx<(f,w)<g(®) [ wdx
w>0 w <0 w >0

+ g(—oo)f dx .
w <0

The surprising result of [5] is that (5) is also sufficient for
solvability of (2).

We shall present a generalization of this result,
based on Theorem 1, concerning elliptic systems of N equa-
tions for N functions u = (ul,. 5 ,uN) in §. Let L bea
linear elliptic system of order m , and consider vector func-
tions u satisfying homogeneous boundary conditions Bu=0
which are "nice" relative to L, i.e., so called, coercive
boundary conditions. We will not describe these in any
detail except to say that ker L = the space of functions u
satisfying Lu = 0, and Bu =0, on I' is finite dimensional,
spanned, say, by the (vector) functions wj,...,wy; further-
more, the range of L (acting on smooth functions satisfying
Bu = 0) consists of the smooth functions which are

5
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Lz-orthogonal to a finite number of smooth functions

Wiyeeos w;i\.: . The elliptic operator has an index

i-indL=d-d ,

and we shall assume that i =d - d* >0.

We shall also make the following hypothesis con-
cerning ker L, the space of functions spanned by
Wl’ oe ey, Wyt

(UC) w= 0 is the only function in ker L. which vanishes

on a set of positive measure in §.

The nonlinear system to be solved is of the form
(6) Lu-=g(x, Du) in 8§, Bu=0 on I,

where g is a smooth bounded N vector for x ¢ ® and all
values of the other arguments; g depends on u and its
derivatives D@u up to order m-1. For all arguments
n={n%} # 0 with |o| <m-1 (symmetric in the indices

a; of (@ =a) ... a,)) we suppose that
(7) h(x,n) = lim g(x,rn)
r—> 0
and that the convergence is uniform on § X { ln[ =1} . We

shall give sufficient conditions on h to ensure the solva-
bility of (6).
For a ¢ S9-1 define the map ¢ : s4-1- RA* py

o.(a) = (h(x, DY aw (x),w.), B=1,...,d .
p i g
As a consequence of the hypothesis (UC) one may prove
(as in [6] with the aid of Lemmas 1 and 2 there) that the
mapping ¢ is continuous. Assume that ¢(a) # 0 for
a ¢ S*7* and set
Fel

__o(a _d—l_)ﬁd-
R R
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Theorem 2. If ¢ has nontrivial stable homotopy then (6)
is solvable.

By a solution we mean a function in C™-1 with
derivatives of order m in L_ for large p. If g is smooth
then using well known regularity theory, it follows that any
such solution is smooth.

The proof of the theorem is the same as that of
Theorem 2 in [6].

Remarks. (i) If d = d* then "U has naontrivial stable
homotopy" means simply that | is homotopically nontrivial,
i.e. has nonzero degree. In this case one proves the result
using the Leray-Schauder degree.

Incase N=1,d=d"=1, and g = g(x,u) depends
only on u and not on its derivatives, then h(x,n) corres-
ponds to

h (x) = h(x,#]l) = lim g(x,u) .
* U—>=+ 00

In this case the condition that | be homotopically nontrivial
means that

A :f h+w dx+f h_w' dx
w>0 w <0
and

A, = f h+w'dx+f h w'dx
w<0 w>0

have opposite signs. Theorem 2 then contains the result of
Landesman and Lazer described above as a special case.

(ii) In the theorem, § may be a manifold, and the system
of vectors u(x) may be replaced by cross sections of a
vector bundle in which L acts; g is then alsorequired to
take its values there. The vector bundle is supposed to
have a Hermitian metric, and the maps ¢ and ¢ may be
defined as before. Their definitions depend on choice of
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bases Wi and w;x and so are not canonical. However the
condition on the stable homotopy of | is independent of
these choices.

(iii) Since it is not known how to determine whether a
map ¢ has nontrivial stable homotopy, the theorem is not
readily applicable.
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