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Preface

This book is designed as a text for a first-year graduate algebra course.
As necessary background we would consider a good undergraduate linear
algebra course. An undergraduate abstract algebra course, while helpful,
is not necessary (and so an adventurous undergraduate might learn some
algebra from this book).

Perhaps the principal distinguishing feature of this book is its point of
view. Many textbooks tend to be encyclopedic. We have tried to write one
that is thematic, with a consistent point of view. The theme, as indicated
by our title, is that of modules (though our intention has not been to write
a textbook purely on module theory). We begin with some group and ring
theory, to set the stage, and then, in the heart of the book, develop module
theory. Having developed it, we present some of its applications: canonical
forms for linear transformations, bilinear forms, and group representations.

Why modules? The answer is that they are a basic unifying concept
in mathematics. The reader is probably already familiar with the basic
role that vector spaces play in mathematics, and modules are a generaliza-
tion of vector spaces. (To be precise, modules are to rings as vector spaces
are to fields.) In particular, both abelian groups and vector spaces with a
linear transformation are examples of modules, and we stress the analogy
between the two—the basic structure theorems in each of these areas are
special cases of the structure theorem of finitely generated modules over a
principal ideal domain (PID). As well, our last chapter is devoted to the
representation theory of a group G over a field F, this being an important
and beautiful topic, and we approach it from the point of view of such
a representation being an F(G)-module. On the one hand, this approach
makes it very clear what is going on, and on the other hand, this application
shows the power of the general theory we develop.

We have heard the joke that the typical theorem in mathematics states
that something you do not understand is equal to something else you can-
not compute. In that sense we have tried to make this book atypical. It
has been our philosophy while writing this book to provide proofs with a
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maximum of insight and a minimum of computation, in order to promote
understanding. However, since in practice it is necessary to be able to com-
pute as well, we have included extensive material on computations. (For
example, in our entire development in Chapter 4 of canonical forms for
linear transformations we only have to compute one determinant, that of
a companion matrix. But then Chapter 5 is almost entirely dedicated to
computational methods for modules over a PID, showing how to find canon-
ical forms and characteristic polynomials. As a second example, we derive
the basic results about complex representations of finite groups in Section
8.3, without mentioning the word character, but then devote Section 8.4 to
characters and how to use them.)

Here is a more detailed listing of the contents of the book, with em-
phasis on its novel features:

Chapter 1 is an introduction to (or review of) group theory, including
a discussion of semidirect products.

Chapter 2 is an introduction to ring theory, covering a variety of stan-
dard topics.

In Chapter 3 we develop basic module theory. This chapter culminates
in the structure theorem for finitely generated modules over a PID. (We
then specialize to obtain the basic structure theorem for finitely generated
Abelian groups.) We feel that our proof of this theorem is a particularly
insightful one. (Note that in considering free modules we do not assume the
corresponding results for vector spaces to be already known.) Noteworthy
along the way is our introduction and use of the language of homological
algebra and our discussion of free and projective modules.

We begin Chapter 4 with a treatment of basic topics in linear alge-
bra. In principle, this should be a review, but we are careful to develop as
much of the theory as possible over a commutative ring (usually a PID)
rather than just restricting ourselves to a field. The matrix representation
for module homomorphisms is even developed for modules over noncommu-
tative rings, since this is needed for applications to Wedderburn’s theorem
in Chapter 7. This chapter culminates in the derivation of canonical forms
(the rational canonical form, the (generalized) Jordan canonical form) for
linear transformations. Here is one place where the module theory shows its
worth. By regarding a vector space V over a field F', with a linear transfor-
mation 7', as an F[X]-module (with X acting by T), these canonical forms
are immediate consequences of the structure theorem for finitely generated
torsion modules over a PID. We also derive the important special case of
the real Jordan canonical form, and end the chapter by deriving the spectral
theorem.

Chapter 5 is a computational chapter, showing how to obtain effectively
(in so far as is possible) the canonical forms of Chapter 4 in concrete cases.
Along the way, we introduce the Smith and Hermite canonical forms as well.
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This chapter also has Dixon’s proof of a criterion for similarity of matrices
based solely on rank computations.

In Chapter 6 we discuss duality and investigate bilinear, sesquilinear,
and quadratic forms, with the assistance of module theory, obtaining com-
plete results in a number of important special cases. Among these are the
cases of skew-symmetric forms over a PID, sesquilinear (Hermitian) forms
over the complex numbers, and bilinear and quadratic forms over the real
numbers, over finite fields of odd characteristic, and over the field with two
elements (where the Arf invariant enters in the case of quadratic forms).

Chapter 7 has two sections. The first discusses semisimple rings and
modules (deriving Wedderburn’s theorem), and the second develops some
multilinear algebra. Our results in both of these sections are crucial for
Chapter 8.

Our final chapter, Chapter 8, is the capstone of the book, dealing with
group representations mostly, though not entirely, in the semisimple case.
Although perhaps not the most usual of topics in a first-year graduate
course, it is a beautiful and important part of mathematics. We view a
representation of a group G over a field F as an F(G)-module, and so this
chapter applies (or illustrates) much of the material we have developed in
this book. Particularly noteworthy is our treatment of induced representa-
tions. Many authors define them more or less ad hoc, perhaps mentioning as
an aside that they are tensor products. We define them as tensor products
and stick to that point of view (though we provide a recognition principle
not involving tensor products), so that, for example, Frobenius reciprocity
merely becomes a special case of adjoint associativity of Hom and tensor
product.

The interdependence of the chapters is as follows:

1
!
2
!
3
|
4.1-4.3
v ! N
4.4-4.6 6 7
! !
5
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We should mention that there is one subject we do not treat. We do
not discuss any field theory in this book. In fact, in writing this book we
were careful to avoid requiring any knowledge of field theory or algebraic
number theory as a prerequisite.

We use standard set theoretic notation. For the convenience of the
reader, we have provided a very brief introduction to equivalence relations
and Zorn’s lemma in an appendix. In addition, we provide an index of
notation, with a reference given of the first occurrence of the symbol.

We have used a conventional decimal numbering system. Thus a refer-
ence to Theorem 4.6.23 refers to item number 23 in Section 6 of Chapter
4, which happens to be a theorem. Within a given chapter, the chapter
reference is deleted.

The symbol O is used to denote the end of a proof; the end of proof
symbol O with a blank line is used to indicate that the proof is immediate
from the preceding discussion or result.

The material presented in this book is for the most part quite standard.
We have thus not attempted to provide references for most results. The
bibliography at the end is a collection of standard works on algebra.

Baton Rouge, Louisiana William A. Adkins
Steven H. Weintraub
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Chapter 1

Groups

In this chapter we introduce groups and prove some of the basic theorems in
group theory. One of these, the structure theorem for finitely generated abelian
groups, we do not prove here but instead derive it as a corollary of the more
generajl structure theorem for finitely generated modules over a PID (see Theorem
3.7.22).

1.1 Definitions and Examples

(1.1) Definition. A group is a set G together with a binary operation
-:GxG-G

satisfying the following three conditions:

(a) a-(b-c)=(a-b)-c foralla,b, ce G. (Associativity)

(b) There exists an element e € G such thata-e =e-a=a for alla € G.
(Ezistence of an identity element)

(¢) For each a € G there ezists ab € G such that a-b = b-a = e. (Existence
of an inverse for each a € G)

It is customary in working with binary operations to write a - b rather
than -(a, b). Moreover, when the binary operation defines a group structure
on a set G then it is traditional to write the group operation as ab. One
exception to this convention occurs when the group G is abelian, i.e., if
ab = ba for all a, b € G. If the group G is abelian then the group opera-
tion is commonly written additively, i.e., one writes a + b rather than ab.
This convention is not rigidly followed; for example, one does not suddenly
switch to additive notation when dealing with a group that is a subset of
a group written multiplicatively. However, when dealing specifically with
abelian groups the additive convention is common. Also, when dealing with
abelian groups the identity is commonly written e = 0, in conformity with
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the additive notation. In this chapter, we will write e for the identity of gen-
eral groups, i.e., those written multiplicatively, but when we study group
representation theory in Chapter 8, we will switch to 1 as the identity for
multiplicatively written groups.

To present some examples of groups we must give the set G and the
operation - : G x G — G and then check that this operation satisfies (a),
(b), and (c) of Definition 1.1. For most of the following examples, the fact
that the operation satisfies (a), (b), and (c) follows from properties of the
various number systems with which you should be quite familiar. Thus
details of the verification of the axioms are generally left to the reader.

(1.2) Examples.

(1) The set Z of integers with the operation being ordinary addition of
integers is a group with identity e = 0, and the inverse of m € Z is
—m. Similarly, we obtain the additive group Q of rational numbers, R
of real numbers, and C of complex numbers.

(2) The set Q* of nonzero rational numbers with the operation of ordinary
multiplication is a group with identity e = 1, and the inverse of a € Q*
is 1/a. Q* is abelian, but this is one example of an abelian group that
is not normally written with additive notation. Similarly, there are the
abelian groups R* of nonzero real numbers and C* of nonzero complex
numbers.

(3) Theset Z, = {0,1,...,n—1} with the operation of addition modulo n
is a group with identity 0, and the inverse of z € Z,, is n—z. Recall that
addition modulo n is defined as follows. If z, y € Z,, take z +y € Z
and divide by n to get £ +y = gn + r where 0 < r < n. Then define
z +y (mod n) to be r.

(4) The set U, of complex nt* roots of unity, i.e., U, = {exp((2kni)/n) :
0 < k < n — 1} with the operation of multiplication of complex num-
bers is a group with the identity e = 1 = exp(0), and the inverse of
exp((2kmi)/n) is exp((2(n — k)mi)/n).

(5) Let Z¥ = {m:1 < m < n and m is relatively prime to n}. Under the
operation of multiplication modulo n, Z} is a group with identity 1.
Details of the verification are left as an exercise.

(6) If X is a set let Sx be the set of all bijective functions f : X — X.
Recall that a function is bijective if it is one-to-one and onto. Functional
composition gives a binary operation on Sy and with this operation
it becomes a group. Sx is called the group of permutations of X or
the symmetric group on X. If X = {1, 2, ..., n} then the symmetric
group on X is usually denoted S,, and an element « of S,, can be
conveniently indicated by a 2 x n matrix

= (afty ci) . atm)



(7)

(8)

(9)
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where the entry in the second row under k is the image a(k) of k
under the function «. To conform with the conventions of functional
composition, the product af will be read from right to left, i.e., first
do [ and then do a. For example,

1 2 3 4\(1 2 3 4\ (1 2 3 4
3 2 4 1)\3 41 2) \4 13 2)"

Let GL(n, R) denote the set of n x n invertible matrices with real
entries. Then GL(n, R) is a group under matrix multiplication. Let
SL(n, R) = {T € GL(n, R) : detT = 1}. Then SL(n,R) is a group
under matrix multiplication. (In this example, we are assuming famil-
iarity with basic properties of matrix multiplication and determinants.
See Chapter 4 for details.) GL(n, R) (respectively, SL(n, R)) is known
as the general linear group (respectively, special linear group) of degree
n over R.

If X is a set let P(X) denote the power set of X, i.e., P(X) is the set
of all subsets of X. Define a product on P(X) by the formula AA B =
(A\B)U(B\ A). AA B is called the symmetric difference of A and
B. 1t is a straightforward exercise to verify the associative law for the
symmetric difference. Also note that AAA =@ and 0AA = AAD = A.
Thus P(X) with the symmetric difference operation is a group with
as identity and every element as its own inverse. Note that P(X) is an
abelian group.

Let C(R) be the set of continuous real-valued functions defined on R
and let D(R) be the set of differentiable real-valued functions defined
on R. Then C(R) and D(R) are groups under the operation of function
addition.

One way to explicitly describe a group with only finitely many elements

is to give a table listing the multiplications. For example the group {1, —1}
has the multiplcation table

| 1. -1
1 1 -1
-1 | -1 1

whereas the following table
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O o8 o

0O R o
S0 0 88
8 o 0 oo
o8 00

is the table of a group called the Klein 4-group. Note that in these tables
each entry of the group appears exactly once in each row and column.
Also the multiplication is read from left to right; that is, the entry at the
intersection of the row headed by a and the column headed by 3 is the
product af3. Such a table is called a Cayley diagram of the group. They
are sometimes useful for an explicit listing of the multiplication in small
groups.
The following result collects some elementary properties of a group:

(1.3) Propeosition. Let G be a group.

(1) The identity e of G is unique.

(2) The inverse b of a € G is unique. We denote it by a=*.

(3) (') ' =a foralla€ G and (ab)"! =b~ta"! for alla, b€ G.

(4) Ifa, b€ G the equations ax = b and ya = b each have unique solutions
in G.

(5) Ifa,b, c € G then ab = ac implies that b = c and ab = cb implies that
a=c.

Proof. (1) Suppose €’ is also an identity. Then ¢/ = €’e = e.

(2) Suppose ab = ba = e and ab’ = b'a = e. Then b = eb = (ba)b =
b'(ab) = b'e =¥, so inverses are unique.

(3) a(a™!) = (@ l)a = e, so (a!)"! = a. Also (ab)(b~la= 1) =
a(bb~1)a™! = aa=! = e and similarly (b~'a"1)(ab) = e. Thus (ab)™! =
b~la=t.

(4) z = a='b solves ar = b and y = ba~! solves ya = b, and any
solution must be the given one as one sees by multiplication on the left or
right by a=1.

(5) If ab = ac then b = a~'(ab) = a"!(ac) = c. O

The results in part (5) of Proposition 1.3 are known as the cancellation
laws for a group.

The associative law for a group G shows that a product of the elements
a, b, ¢ of G can be written unambiguously as abc. Since the multiplication
is binary, what this means is that any two ways of multiplying a, b, and ¢
(so that the order of occurrence in the product is the given order) produces
the same element of G. With three elements there are only two choices for
multiplication, that is, (ab)c and a(bc), and the law of associativity says
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that these are the same element of G. If there are n elements of G then
the law of associativity combined with induction shows that we can write
aap - - - a, unambiguously, i.e., it is not necessary to include parentheses
to indicate which sequence of binary multiplications occurred to arrive at
an element of G involving all of the a;. This is the content of the next
proposition.

(1.4) Proposition. Any two ways of multiplying the elements ay, as, ..., a,
in a group G in the order given (i.e., removal of all parentheses produces
the juztaposition aas - - - a,) produces the same element of G.

Proof. If n = 3 the result is clear from the associative law in G.

Let n > 3 and consider two elements g and h obtained as products
of ay, as, ..., a, in the given order. Writing ¢ and h in terms of the last
multiplications used to obtain them gives

g=(a1---a;) (ai+1-"-an)
and

h=(ay-a;)(aj41-an).

Since 7 and j are less than n, the induction hypothesis implies that the
products a; - - - @i, @iy1 - Qn, @1 ---a;, and a;4; - - a, are unambiguously
defined elements in G. Without loss of generality we may assume that 7 < j.
If ¢ = j then g = h and we are done. Thus assume that ¢ < j. Then, by the
induction hypothesis, parentheses can be rearranged so that

g=(a1--a;)((@qiy1---a;)(aj41--- an))
and

h=((a1---ai)(ait1---a;)) (@41 an).

Letting A = (a1---a;), B = (@i+1---a;), and C = (aj4+1---ay,) the in-
duction hypothesis implies that A, B, and C are unambiguously defined
elements of G. Then

g=A(BC)=(AB)C=h
and the proposition follows by the principle of induction. ]

Since products of n elements of G are unambiguous once the order has
been specified, we will write ajasz---a, for such a product, without any
specification of parentheses. Note that the only property of a group used
in Proposition 1.4 is the associative property. Therefore, Proposition 1.4 is
valid for any associative binary operation. We will use this fact to be able to
write unambiguous multiplications of elements of a ring in later chapters. A
convenient notation for a; - - - a, is [[;; a;. If a; = a for all i then [T, ais
denoted a™ and called the n'* power of a. Negative powers of a are defined



