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PREFACE

This collection includes the main part of the best papers presented in the
International Conference (CHAOS2008) on Chaotic Modeling, Simulation
and Applications, Chania, Crete, Greece, June 3-6, 2008. The task was to
bring together various groups working in the area of Nonlinear Systems
and Dynamics, Chaotic Theory and Application for exchanging views and
reporting research findings. The topics included are relevant to the study
of nonlinear systems and dynamics in an interdisciplinary research, and
include many very interesting applications. This book provides a valuable
collection of new ideas, methods, and techniques in the field of Nonlinear
Dynamics, Chaos, Fractals and their applications in General Science and
Engineering Sciences.

The book focuses on many fields such as Chaos and Dynamical Systems,
Nonlinear Systems, Fractals, Chaotic Attractors, Mechanics, Hydro-Fluid
Dynamics, Chaotic Advection, Chaos in Meteorology and Cosmology, Bi-
furcation, Hamiltonian and Quantum Chaos, Plasma Physics, Chaos in
Biology and Genetics, Chaos in Medicine and Physiology, Chaotic Control,
Time Series Analysis and Forecasting Chaotic Systems, Chaos in Economy
and Markets, Traffic Flow, and Chaotic Simulations. These contributions
present new ideas and methods for solving problems by analyzing the rele-
vant data. Also, the use of recent advances in different fields are emphasized,
especially on chaotic simulation methods and techniques.

We would like to acknowledge the valuable support and hospitality pro-
vided by the Mediterranean Agronomic Institute, Chania, Greece. Sincere
thanks must also go to those whose contributions have been essential in or-
ganizing the Conference and creating these Proceedings. Finally, We would
like to thank Anthi Katsirikou, Mary Karadima, Aggeliki Oikonomou and
George Matalliotakis for their valuable support.

February 10, 2009

Christos H. Skiadas, Technical University of Crete, Greece

Ioannis Dimotikalis, Technological Educational Institute of Crete, Greece
Charilaos Skiadas, Hanover College, Indiana, USA
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The Effects of Machine Components on Bifurcation and Chaos
as Applied to Multimachine System

M. M. Alomari* and B. S. Rodanski

University of Technology, Sydney (UTS)
P.O. Bozx 123, Broadway NSW 2007, Australia

Email: *majdi.m.alomari@eng.uts. edu.au

The second system of the IEEE second benchmark model of Subsynchronous
Resonance (SSR) is considered. The system can be mathematically modeled as
a set of first order nonlinear ordinary differential equations with the compensa-
tion factor (u = X./X,) as a bifurcation (control) parameter. So, bifurcation
theory can be applied to nonlinear dynamical systems, which can be written
as dx/dt = F(z;p). The effects of machine components, i.e. damper winding,
automatic voltage regulator (AVR), and power system stabilizer (PSS) on SSR
in power system are studied. The results show that these components affect
the locations, number and type of the Hopf bifurcations.

Keywords: Hopf bifurcation; chaos; subsynchronous resonance; damper wind-
ings; PSS.

1. Introduction

In power systems series compensation is considered as a powerful technique
based on economic and technical considerations for increasing effectively
the power transfer capability as well as improving the stability of these
systems. However, this introduces problems as well as with the benefits,
namely the electromechanical interaction between electrical resonant cir-
cuits of the transmission system and the torsional natural frequencies of the
turbine-generator rotor. This phenomenon is called subsynchronous reso-
nance (SSR), and it can cause shaft fatigue and possible damage or failure.

The phenomenon of subsynchronous resonance occurs mainly in series
capacitor-compensated transmission systems. SSR has been studied exten-
sively since 1970, when a major transmission network in southern California
experienced shaft failure to its turbine-generator unit with series compen-
sation. The subsynchronous torques on the rotor is a matter of concern
because the turbine-generator shaft itself has natural modes of oscillation
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that are typical of any spring mass system. It happens that the shaft oscilla-
tory modes are at subsynchronous frequencies. Should the induced subsyn-
chronous torques coincide with one of the shaft natural modes of oscillation,
the shaft will oscillate at this natural frequency, sometimes with high am-
plitude.

Three types of SSR can identify the interaction of the system and the
generator under the subsynchronous resonance. They have been called tor-
sional interaction effect, induction generator effect, and transient torque
effect. In this research, we focus on the torsional interaction effect, which
results from the interaction of the electrical subsynchronous mode with the
torsional mode. Several methods have been used in SSR study. The most
common of these methods are eigenvalue analysis, frequency scanning, and
time-domain analysis. The eigenvalue analysis is used in this research. It
is a very valuable technique because it provides both the frequencies of
oscillation and the damping at each frequency.

Recently, power system dynamics has been studied using the nonlin-
ear dynamics point of view, which utilizes the bifurcation theory. Actually,
power systems have rich bifurcation phenomena. Bifurcation is used to in-
dicate a qualitative change in the features of a system, such as the number
and types of solution upon a small variation in the parameters of a system.
It has been revealed that there are different types of bifurcation in power
system models. In general, the power system model can be represented by
a system of nonlinear algebraic and ordinary differential equations.

The bifurcation theorem was used by Zhu et al. [1] to demonstrate the
existence of a Hopf bifurcation in a single machine infinite busbar (SMIB)
power system, in which the dynamics of the damper windings and the AVR
are neglected. Nayfeh et al. [2] applied the bifurcation theory to a practical
series capacitor compensated single machine power system, the BOARD-
MAN turbine-generator system. Harb et al. [3] applied a bifurcation anal-
ysis together with the method of multiple scales and Floquet theory to the
CHOLLA #4 turbine-generator system. Tomim et al. [4] proposed an in-
dex that identifies Hopf bifurcation points in power systems susceptible to
subsynchronous resonance. Dobson and Barocio [5] analyzed general per-
turbations of a weak resonance and found two distinct behaviors, including
interactions near strong resonances in which the eigenvalues quickly change
direction.

In this paper, we focus on the torsional interaction effect, which results
from the interaction of the electrical subsynchronous mode with the tor-
sional mode. The second system of the IEEE second benchmark model is
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considered. We use bifurcation theory and chaos to investigate the complex
dynamics of the considered system. The type of the Hopf bifurcation is
determined by numerical integration of the system, with specific amount
of initial disturbances, slightly before and after the bifurcation value. On
further increase of the compensation factor, the system experiences chaos
via torus attractor. Chaos is a bounded steady-state behavior that is not
an equilibrium solution or a periodic solution or a quasiperiodic solution.®

2. System Description

The system considered is the two different machine infinite bus system,
shown in Figure 1(a). The two machines have a common torsional mode
connected to a single series compensated transmission line. The model and
the parameters are provided in the second system of the IEEE second bench-
mark model.

C}
Gen2 . e
O !R.: Xoa X o
i =<
o - —— == . o

- B i e

R X Y% | R X

(a) Electrical system (Two (b) Electro-mechanical (c) Block diagram of the use
different machine infinite bus  systems for the first and of AVR and PSS to the first
system) second units generator

Fig. 1.

The electro-mechanical systems for the first and second units are shown
in Figure 1(b). The first unit consists of exciter (EX), generator (Gen.1),
low-pressure (LP1) and high-pressure (HP1) turbine sections. And the
second unit consists of generator (Gen.2), low-pressure (LP2) and high-
pressure (HP2) turbine sections. Every section has its own angular momen-
tum constant M and damping coefficient D, and every pair of successive
masses have their own shaft stiffness constant K, as shown in Figure 1(b).
The data for electrical and mechanical system are provided in [7]. Replace-
ment of these generators with a single equivalent generator will change the
resonance characteristics and therefore is not justified. Consequently, each
generator is represented in its own rotor frame of reference and suitable a
transformation is made.
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3. Mathematical Model

The mathematical model of the electrical and mechanical system will be
presented in this section. Actually, the electrical system includes the dy-
namic nonlinear mathematical model of a synchronous generator and that
of the transmission line. The generator model considered in this study in-
cludes five equations, d-axis stator winding, g-axis stator winding, d-axis
rotor field winding, g-axis rotor damper winding and d-axis rotor damper
winding equations. Each mass of the mechanical system can be modeled
by a second order ordinary differential equation (swing equation), which
is presented in state space model as two first order ordinary differential
equations.

Using the direct and quadrature d-q axes and Park’s transformation, we
can write the complete mathematical model that describes the dynamics of
the system as follows. For the first generator:

di di
4l . (XK & Ky eonbpis —22

dt dt
di di di
q2 1 D1
e $X =
% mdl - mdl
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where: vp = Rxl Edl‘“, and for i,7 = 1,2 and i # j, sind,;; = sin(dy; — 0r5),
€O 0pjj = cos(&rim— Orj)-

Similarly, for the second generator the generator model includes five
equations as follows:
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