 MitsuruMatsui (B)

Fast =
*Softwa re Encryptlo

8th International Workshop, FSE 2001
Yokohama, Japan, April 2001
Revised Papers

i LNCS 2355

{i{%ﬁ Springer

Mitsuru Matsui (Ed.)

Fast Software Encryption

8th International Workshop, FSE 2001
Yokohama, Japan, April 2-4, 2001
Revised Papers

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Mitsuru Matsui

Mitsubishi Electric Corporation

5-1-1 Ofuna Kamakura Kanagawa, 247-8501, Japan
E-mail: matsui @iss.isl.melco.co.jp

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Fast software encryption : 8th international workshop ; proceedings / FSE
2001, Yokohama, Japan, April 2 - 4, 2001. Mitsuru Matsui (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2355)

ISBN 3-540-43869-6

CR Subject Classification (1998): E.3, F2.1, E4, G4

ISSN 0302-9743
ISBN 3-540-43869-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcusting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

hutp://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna e. K.
Printed on acid-free paper SPIN 10870083 06/3142 543210

Lecture Notes in Computer Science 2355
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London

Milan

Paris

Tokyo

Preface

Fast Software Encryption is an eight-year-old workshop on symmetric crypto-
graphy, including the design and cryptanalysis of block and stream ciphers, as
well as hash functions. The first Fast Software Encryption Workshop was held
in Cambridge in 1993, followed by Leuven in 1994, Cambridge in 1996, Haifa in
1997, Paris in 1998, Rome in 1999, and New York in 2000. This Fast Software
Encryption Workshop, FSE 2001, was held from 2-4 April 2001 in Yokohama,
Japan, in cooperation with the Institute of Industrial Science, of the University
of Tokyo.

This year a total of 46 papers were submitted to FSE 2001. After a two-
month review process, 27 papers were accepted for presentation at the workshop.
In addition, we were fortunate to be able to organize a special talk by Bart
Preneel on the NESSIE project, a European initiative to evaluate cryptographic
algorithms. The committee of this workshop was:

General Chair
Hideki Imai (The University of Tokyo)
Program Committee

Ross Anderson (Cambridge Univ.) Eli Biham (Technion)

Cunsheng Ding (Singapore) Henri Gilbert (France Telecom)
Dieter Gollman (Microsoft) Thomas Johansson (Lund Univ.)
Lars Knudsen (Bergen Univ.) James Massey (Denmark)
Mitsuru Matsui (Mitsubishi Electric, Chair) Kaisa Nyberg (Nokia)

Bart Preneel (Katholieke Univ. Leuven) Bruce Schneier (Counterpane)

We would like to thank all submitting authors and the committee members
for their hard work. We are also appreciative of the financial support provided
by Mitsubishi Electric Corporation. Special thanks are due to Toshio Tokita,
Junko Nakajima, Yasuyuki Sakai, Seiichi Amada, Toshio Hasegawa, Katsuyuki
Takashima, and Toru Sorimachi for their efforts in making the local arrangements
for this workshop.

We were very pleased and honored to host the first FSE workshop held in
Asia. Finally, we are also happy to announce that the next FSE will be the first
FSE workshop sponsored by International Association for Cryptologic Research
(IACR).

May 2002 Mitsuru Matsui

Table of Contents

Cryptanalysis of Block Ciphers I

The Saturation Attack — A Bait for Twofish 1
Stefan Lucks

Linear Cryptanalysis of Reduced Round Serpent 16
Eli Biham, Orr Dunkelman, Nathan Keller

Cryptanalysis of the Mercy Block Cipher 28
cott R. Fluhrer

Hash Functions and Boolean Functions

Producing Collisions for PANAMA 37
Vincent Rigmen, Bart Van Rompay, Bart Preneel, Joos Vandewalle

The RIPEMD® and RIPEMD” Improved Variants of MD4 Are Not
Collision Free.o 52
Christophe Debaert, Henri Gilbert

New Constructions of Resilient Boolean Functions with Maximal
Nonlinearity 66
Yuriy Tarannikov

Modes of Operations

Optimized Self-Synchronizing Mode of Operation 78
Ammar Alkassar, Alexander Geraldy, Birgit Pfitzmann,
Ahmad-Reza Sadeghi

Fast Encryption and Authentication: XCBC Encryption and XECB
Authentication Modes 92
Virgil D. Gligor, Pompiliu Donescu

Incremental Unforgeable Encryption........ 109
Enrico Buonanno, Jonathan Katz, Moti Yung

Cryptanalysis of Stream Ciphers I

ZIP Attacks with Reduced Known Plaintext. 125
Michael Stay

Cryptanalysis of the SEAL 3.0 Pseudorandom Function Family 135
Scott R. Fluhrer

VIIT Table of Contents

Cryptanalysis of SBLH 144
Goce Jakimouvski, Ljupco Kocarev

A Practical Attack on Broadcast RC4 152
Itsik Mantin, Adi Shamir

Cryptanalysis of Block Ciphers II

Improved SQUARE Attacks against Reduced-Round HIEROCRYPT 165
Paulo S.L.M. Barreto, Vincent Riymen, Jorge Nakahara,
Bart Preneel, Joos Vandewalle, Hae Y. Kim

Differential Cryptanalysisof Q... 174
Eli Biham, Vladimir Furman, Michal Misztal, Vincent Rijmen

Differential Cryptanalysis of Nimbus 187
Vladimir Furman

Cryptanalysis of Stream Ciphers I1

Fast Correlation Attack Algorithm with List Decoding and an
Application 196
Miodrag J. Mihaljevié, Marc P.C. Fossorier, Hideki Imai

Bias in the LEVIATHAN Stream Cipher.............................. 211
Paul Crowley, Stefan Lucks

Analysis of SSC2. 219
Danzel Bleichenbacher, Willi Meier

Pseudo-Randomness

Round Security and Super-Pseudorandomness of MISTY
Type Structure 233
Tetsu Iwata, Tomonobu Yoshino, Tomohiro Yuasa, Kaoru Kurosawa

New Results on the Pseudorandomness of Some Blockcipher
CONSLTUCEIONS 4 vs vosmssssmsms ws ausms ashs sashs ses5s 28 mEEs cEERESS 43 248
Henri Gilbert, Marine Minier

FSE 2001 Special Talk

NESSIE: A European Approach to Evaluate Cryptographic Algorithms ... 267
Bart Preneel

Cryptanalysis of Block Ciphers III

Related Key Attacks on Reduced Round KASUMI 277
Mark Blunden, Adrian Escott

Table of Contents

Security of Camellia against Truncated Differential Cryptanalysis

Masayuki Kanda, Tsutomu Matsumoto

Impossible Differential Cryptanalysis of Zodiac

Deukjo Hong, Jaechul Sung, Shiho Moriai, Sangjin Lee, Jongin Lim

Design and Evaluation

The Block Cipher SC2000 o e

Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama,
Masahiko Takenaka, Kouichi Itoh, Jun Yajima, Naoya Torii,
Hidema Tanaka

Flaws in Differential Cryptanalysis of Skipjack........................

Louis Granboulan

Efficient Algorithms for Computing Differential Properties of

Additiont e

Helger Lipmaa, Shiho Morai

Author Index

IX

. 286

The Saturation Attack — A Bait for Twofish

Stefan Lucks*

Theoretische Informatik
University of Mannheim, 68131 Mannheim, Germany
lucks@th. informatik.uni-mannheim.de

Abstract. This paper introduces the notion of a “saturation attack”.
Consider a permutation p over w-bit words. If p is applied to all 2¥ dis-
joint words, the set of outputs is exactly the same as the set of inputs. A
saturation attack exploits this fact. The current paper applies saturation
attacks on reduced-round variants of the Twofish block cipher with up
to seven rounds with full whitening or eight rounds without whitening
at the end (i.e., half of the cipher). The attacks take up to 2'?” chosen
plaintexts (half of the codebook) and are 2-4 times faster than exhaustive
search. The attacks are based on key-independent distinguishers for up
to six rounds of T'wofish, making extensive use of saturation properties.

1 Introduction

Modern b-bit block ciphers often use permutations p : {0,1}* — {0,1}"* with
w < b as building blocks. E.g., p may be an S-box, a round function, or a group
operation where one of the operands is constant. The constant may be unknown
to the cryptanalyst, e.g. as a part of the (round) key. We regard the input for p
as a data channel. For the cryptanalyst, p may be known or unknown, and the
cryptanalysts may be unable to determine the input for p. A “saturation attack”
is based on the idea of choosing a set of k x 2" plaintexts such that each of the
2% inputs for p occurs exactly k times. In this case, we say that the data channel
into p is “saturated”. A saturation attack exploits the fact that if the input for
p is saturated, then the output from p is saturated, too.

The name “saturation attack” is new, but such attacks have been studied
before. E.g., the “Square attack™ is a saturation attack, developed for the block
cipher Square [4]. It works as well for other Square-like ciphers such as the AES
candidate Crypton [11,12] and the finalist Rijndael [5], which has recently been
chosen as the AES. All these ciphers are 128-bit block ciphers with 8-bit data
channels. The attack starts with a set of 2% plaintexts with one saturated channel.
The other 15 channels are constant. After two rounds, all 16 data channels are
saturated. After three rounds, the saturation property is likely to have been lost,
but the sum of all values in a data channel is zero. This allows to distinguish the
three-round output from random. The best currently known attacks on Crypton
[3] and Rijndael/AES (7] are extensions of the Square attack.

* Supported by German Science Foundation (DFG) grant KR 1521/3-2.

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 1-15, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

2 S. Lucks

“Miss in the middle” attacks [1] are rudimentarily related to saturation at-
tacks, exploiting the fact that given two inputs = # y for a permutation p one
gets two outputs p(x) and p(y) with p(x) # p(y). Also related is the attack on
“Ladder DES”, based on choosing ¢*23? distinct inputs for a 64-bit data channel
and checking if all the outputs are distinct [2].

When using “higher-order differentials” [9], one chooses a certain complete
set of plaintexts and, after some rounds of the cipher, predicts a key-independent
property with probability one. This resembles the current approach.

This paper shows that saturation attacks are a useful tool for ciphers which
are definitely not Square-like. We concentrate on the AES finalist Twofish [15].
So far, the authors of Twofish published some preliminary cryptanalytic results
[16,6] themselves, a key separation property has been identified for Twofish 13,
14,8], and some observations on the generation of the Twofish S-Boxes and on
differential cryptanalysis have been made [10].

The motivation for this research has been twofold. First, even though Twofish
has not been chosen as the AES, it is (and probably will continue to be) used
in practice. E.g., recent versions of popular email encryption programs, namely
PGP and GnuPG [17], implement Twofish. Second, the study of saturation at-
tacks appears to be of independent interest in cryptanalysis.

1.1 Notation

We will use the notion of a “multiset” to describe a w-bit data channel. A
multiset with k * 2" entries is “saturated” if every value in {0,1}" is found
exactly k times in the multiset. If k = 1, a saturated multiset is the set {0, 1}™.

In the context of this paper, a data channel is always 32 bits wide, and
we call a value in a data channel a “word”. We interchangeably view a word
r as a 32-bit string z = (z31,...,70) € {0,1}*? and as an unsigned integer
x = Y, x; * 2'. The addition of values in a data channel is thus addition mod
232 We write “cz<<b” for the rotation of the word x by b bits to the left, and
“x>>b" for rotation to the right. E.g. (zr<<b)>>b = x for all x and b, and
(za1,T30,...,21,20)<&1 = (x30,...,21,T0,231). LSB(x) = x mod 2 denotes the
“least significant bit (LSB)” of z, and LSB'(z) = LSB(xdiv2) denotes the
2nd-least significant bit. Similarly, we define the “most significant bit (MSB)”:
MSB(z) = LSB(z<1). If the multiset M denotes a data channel, the bits at
the LSB-position of M are “balanced” if @, ,; LSB(m) = 0. It turns out to
be useful to also consider “semi-saturated” data channels. The multiset M is
semi-saturated if one bit of M is constant and each of the 23! remaining values
for M appears exactly 2k times in M.

2 A Description of Twofish

In this section, we describe the structure of Twofish. We omit many details,
concentrating on the properties of Twofish which are relevant for our attack.

The Saturation Attack — A Bait for Twofish 3

2.1 The Main Operations of Twofish
Twofish is based on the following operations:

Whitening. Decompose a 128-bit text block into words ag,...,a3 € {0,1}%2.
The Twofish whitening operation is the XOR of four key words K5 €
{0,1}32 to the words a;: b; == a; & K, 5 for j € {0,...,3}, see Figure 1.

ag 1 2 3
I\/0+6~—<-|:9 %}il\,l +5 Kz«s‘% %'..DYK:H—&
b() b] b2 b3

Fig. 1. The Twofish Whitening Operation.

Application of the round function. To compute the i-th round function Fj,
use a pair (a,b) € ({0,1}3?)? as the input and and compute a pair (a’,b’) =
Fi(a,b) € ({0,1}*?)2. The round function F; is defined by two round keys
Kjiyo and Ky ;3 and two functions Gy, Gy : {0,1}32 — {0,1}%2, see Fig. 2:

a’ = Gl(a) + Gz(b) + K2i+27 and b/ = Gl(a) + 2Gz(b) + K2i+3,

The functions G| and G, are key-dependent, but do not depend on i. Given
the round function’s results @’ and b’, the remaining two words ¢, d € {0, 1}32
come into play:

r:=(a"®c)>1, and y:=b & (dxl).

Except for the rotate operations, Twofish works like a Feistel cipher.

Round Function F;

Fig. 2. The Application of the Twofish Round Function.

Our attack greatly depends on the functions Gy and G5 to be permutations
over {0,1}*2. Actually, Go(x) = G(xr<<8). Apart from that, the internal
structure of G; and Gy is not relevant for us.

The swap. Replace (a,b,c,d) € ({0,1}3%)% by (c,d, a,b). See Figure 3.

4 S. Lucks

all)\\/)l
c K a b
Fig. 3. The Twofish Swap.

2.2 The Basic Structure of Twofish

Twofish uses a 16-round Feistel structure with two additional one-bit rotates in
each round, pre-whitening before the first round and post-whitening after the
last round. T'wofish works as follows:

1. Generate the key-dependent S-boxes, which define the functions G; and Gs.

2. Generate four subkey words Ky, ... K3 € {0,1}?? for the pre-whitening, two
subkey words Ko; 42, K9;43 for each round and another four subkey words
Ksg, ..., K3g for the post-whitening.

. Given a plaintext block, do the pre-whitening.

4. Fori:=1 to 15 do: (a) Apply the round function F;.

(b) Do the swap.
. Apply the last round function Fig (no swap in the final round).
6. Do the post-whitening.

w

ot

The first two of the above steps constitute the “key schedule” described
below. Note that we can obviously generalise the Twofish structure to r rounds,
where the loop in step 4 is iterated r — 1 times.

2.3 The Twofish Key Schedule

A Twofish key consists of 128, 192, or 256 bit': 2k words My, ..., Moy _| €
{0,1}*? with k € {2,3,4}, organised as two vectors M, = (Mo, M, ..., Mar_»)
and M, = (M, M3, ..., Ms._y). A third vector S = (Sg, S1,...,Sk_1) is derived
from M. and M, by using techniques from the theory of Reed-Solomon codes.
Given any two of the three vectors M., M, and S, the third one is easy to find.

With these three vectors, the “three halves of a Twofish key”, we can do the
first two steps of the structure described above:

1. The vector S determines the internal S-boxes and thus the functions G'; and
Gy. S is a k-word vector, while the key consists of 2k words or 64k bit.
2. The 40 subkey words Ky, ..., K39 are defined by using functions h. and h,
and by doing 20 “subkey generation” steps (j € {0,...,19}):
Aj = he(j, M.); Ky, =A;+Bj;
Bj := ho(j, M,); Ksj1 = (A; +2B;) 9.

! These are the three generic key lengths of Twofish. Other keys of less than 256 bit
are padded to the next generic length by appending zeros.

The Saturation Attack — A Bait for Twofish 5
3 Distinguishers for Twofish

Given a well-chosen set of plaintexts, we describe how to distinguish reduced-
round versions of Twofish from random permutations.

3.1 A Four-Round Distinguisher

Consider 232 plaintexts (v, a1, 4, avz), where ag, o, and a3 are three arbitrary
32-bit constants and A is the set of all 232 words. The pre-whitening changes
this set of texts to (3o, 51, A, #3) with new constants ;.

Given this set of texts as the input for the first round, the input for the
round function F) is constant: (5o, 31). By (70,71) we denote the output of F},
which then generates the texts (3o, £1, A, v3) with v3 = (#3<<1)®~;. (Note that
A ={a;} = {(a; ®~v0)>>1}.) The swap changes these texts to (A,~s, B0, 51).

In the second round, the 23? inputs for the round function are (A,~3). The
round function generates the pairs (b;, ¢;) with b; = G1(a;)+G2(73)+Kg and ¢; =
Gi(a;)+2Go(y3)+ K7 for a; € A. The sets B = {b;} and C' = {¢; } are saturated,
just like A. Applying the round function here means XORing the constant (3,
to the values of B, followed by a rotation, and XORing ;<1 to C. Neither
operation changes the saturated sets B and C. We get 232 texts (4,73, B,C),
where A, B, and C are saturated. By the swap, we get texts (B,C, A,~3).

The 232 inputs for the third round function are of the form (B,C) with
saturated B and C'. Since both G} and G5 are permutations, G;(b;) # G1(b;) and
Go(ci) # Ga(cj) for by, b € B, ci,cj € C,and i # j. Let d; = G1(b;)+Ga(ci)+Ks
and e; = G1(b;) +2G2(c;) + Ko. The 232 outputs of the round function are of the
form (D, E), with the multisets D = {d;|0 <i < 232} and E = {e;|0 < i < 232},
Neither D nor E is likely to be saturated. However, we are still able to observe
a weaker property: Since }_, cpbi =30 o€ =D gcicpnt = 2% mod 2%%:

Z d; =23 + 23 4 232 % Kg = 0 (mod 23%),

0<i<232

Z e; = 281 424231 4232 4 Ky = 23! (mod 2%2),

0<i<232

thus > d; =5 e; =0 (mod 2) - i.e., the LSBs of D and E are balanced.

Applying the round function means to evaluate 232 pairs (f;,g;) with f; =
fi>1, fl = a; ®d;, and g; = (y3<1) @& e;. Define the multisets F' = {f;},
F' = {f/}, and G = {g;}. We observe: The bits at the LSB-positions of both F”
and G are balanced, and, due to the rotate, the bits at the MSB-position of F
are balanced. Hence, the third round generates 232 texts of the form (B, C, F, G),
which are then swapped to (F,G, B, C).

The multisets (F, G) of inputs for the fourth round function Fj are balanced.
We write (?,7) for the outputs. Applying Fy gives us 2%2 texts (F, G, ?,?). After
the swap, we get (7,7, F, G), where one bit in each F' and G is balanced.

6 S. Lucks

Figure 4 describes graphically, how the distinguisher works. Having chosen

2 plaintexts, we can check the balancedness of the ciphertext bits at the two

positions determined by the MSB of F' and the LSB of G. Whatever the keys are,

four rounds of Twofish always pass this test — even the post-whitening cannot

destroy the balancedness. But a random permutation only passes this test with
about a 25% probability.

(c(gst)(r(%st) % (cxg)st)

(cor st)(co+ st)

X (cm'nst)

(copst)

il s
l =3
(copst) const) (copst) (bal) (b l)
//r /T
const) (const)const) (bal.) (bal.)
&) —
5]} 9 ;
(co st) (bal.) (bal.) ?
\ \K’/'
((const) z/z/ (b?‘l.) (bél.)

Fig. 4. The Four-Round Distinguisher from Section 3.1

3.2 Another Four-Round Distinguisher

Our second distinguisher works quite similarly to the first one. We start with
232 plaintexts of the form (g, ay, g, A) with arbitrary constants c;. The pre-
whitening changes the constants and we get texts (o, 1, f2, A). After the first
round, including the swap, these are (2, A, Bo, 51).

In the second round, the inputs to the round function are of the form
(72, A), where A = {0,1}3? is a saturated set and 73 is constant. The round
function generates the pairs (b;,c;) with b; = Gi(y2) + Go(a;) + K¢ and
¢ = Gi(72) + 2G3(a;) + K7 for a; € A. Now the set B = {b;} is saturated
like A, but the multiset C* = {¢;} isn’t. Instead, it is semi-saturated with a
constant LSB(c¢;) = v* € {0,1} for all ¢; € C*: v* = LSB(G1(v2)) ® LSB(K7).
We apply the round function by adding some constants to the elements of B
and C*, and by then rotating the elements of B. The results are a saturated set
B and a semi-saturated set C*, as before. After the swap, we have texts of the
form (B, C*, v, A).

In the third round the 232 inputs for the round function are of the form
(B,C*). Consider the round function’s outputs (d;,e;) with d; = Gi(b;) +

The Saturation Attack — A Bait for Twofish 7

Go(c;) + Ks and e; = Gi(b;) + 2Gy(c;) + Kg. Since B = {b;} is saturated,
so is {G1(b;)}, and especially

> Gi(b:) =0 (mod2).

0<i<232

Since C* is semi-saturated, it has 23! different values, each repeated exactly
twice. The same holds for the 232 values G(c;) (with ¢; € C*), hence

Z Gy(c;) =0 (mod 2).

0<i<232

Thus, both multisets D = {d;} and E = {e,} are balanced:

Y di = > Gi(bi)+ Y Ga(e:) +2% x Ky =0 (mod 2)

0<i<232 i

and

Yo e =) Gib)+2%) Gye) +2% x Ko =0 (mod 2).

0<i<232

By applying the round function and swapping, we get 232 texts of the form
(F,G,B,C*). The bits at the LSB-position of G are balanced, as are the bits at
the MSB-position of F' (due to the one-bit rotate). The fourth round makes this
(F,G,?,7), and if we do the swap we get texts of the form (7,7, F,G).

A random permutation passes the corresponding test only with a probability
of about 0.25.

3.3 An Extension to Five Rounds

Next, we show how to extend the distinguisher from Section 3.2 to five rounds.
Let « an arbitrary 32-bit constant and c¢* an arbitrary 1-bit constant. We
choose all 2% plaintexts of the form (o, a;,bj,cx), with ¢;div23! = ¢*. We
write (o, A, B,C*) for these 2% texts. Note that the multisets A and B are
saturated and the multiset C* is semi-saturated. The pre-whitening changes the
constant « to 3, and the constant ¢* to v*, but leaves A and B saturated and
C* semi-saturated with a constant MSB. We still have 2°° distinct input texts
(B,A, B,C") for the first round.

Let (e, fi) = F1(B,a;) with a; € A. We can write e; = . + Ga(a;) and
fi = Bs + 2G3(a;), for some constants (., 3r. Hence the outputs of F; consist
of pairs (E, F'*) with saturated F and semi-saturated F*. Set 8* = f; mod 2 for
the constant LSB of the values f; € F'*.

For every value a; € A there are 2% pairs (b;,¢;) with a constant bit v* =
¢; div 231 = MSB(c;). We can fix any constants v, 3 € {0,1}3? with v3 mod 2 =
v* @ f* and find pairs (b;,¢;) in (B,C7T) such that (e; & b;)>>1 = 7, and
fi @ (ci=c1) = 73 holds for every a;. (Note that the MSB of ¢; is the LSB of
C.i<<<1.)

8 S. Lucks

Now the 2% input texts (3, A, B.C") can be separated into 2% disjoint
groups of 232 texts, determined by the pair (y2,v3) of constants, such that after
applying the first round functions all texts in the same group are of the form
(8, A,v2,73). The swap changes these to (v2,73, 3, A).

For each such group, applying the four-round distinguisher from Section 3.2
would result in a set of 232 ciphertexts (?,?, F,G), where the ciphertext bits at
the LSB-position of G and at the MSB-position of F' are balanced. Now, we do
not know which ciphertexts belong into which group, but if these bits for each
group are balanced, then so are all 29 such bits. Five rounds of Twofish always
pass this test, while a random permutation passes it with about 25% probability.

The same technique can also be applied to the distinguisher from Section
3.1. Here, we need 2% plaintexts of the form («, A, B, C) with constant a. A
random permutation passes the corresponding test with about 25% probability.

3.4 An Extension to Six Rounds

To attack six rounds, we choose 2127 plaintexts (a, b;, c;,d;), (half of the code-
book (!)), where b, div23! = MSB(b;) is fixed to an arbitrary constant. Our
plaintexts are of the form (A, BY,C, D), where A, B, and D are saturated mul-
tisets, and BT is a semi-saturated one.

Our choice of plaintexts ensures that for each of the 2% left-side pairs (a;, b;),
all 264 right-side pairs (c;, d;) exist. Neither the pre-whitening nor the application
of the first round function change this property. By the swap we get 2'%7 texts
(C,D, A, B") as the input for the second round. For each 32-bit constant o we
get a group of 2%° texts (a, D, A, B). These are 2%? disjoint groups which are
the kind of input we need for the 5-round distinguisher.

After six rounds of Twofish, we get 2'?7 ciphertexts (?,7, F, G) with balanced
bits at two positions. A random permutation does satisfy this with about 25%
probability.

3.5 Distinguishers: Summary

In Table 1 we summarise the distinguishers we have found. We describe which
section the distinguisher was described in, the number r of Twofish rounds the
attack works for, the chosen plaintexts required (how they look like and how
many we need), and the probability for a random permutation to pass the test.
All tests are one-sided, i.e. r rounds of Twofish pass the test with probability 1.

4 Finding the Key

In modern cryptanalysis, one often uses a distinguisher for some rounds of a
product cipher to find the key: Guess some key bits for one or more additional
rounds and exploit the distinguishing property to falsify wrong key guesses. This
is what we do below, concentrating on using the six-round distinguisher.

