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Preface

Computational fluid dynamics (CFD) is the art of solving partial differential equations
that model the motion of fluids, as well as mass and heat transfer phenomena. This
book describes one the most powerful numerical techniques for CFD, the finite element
method. The finite element method is readily applicable to domains of complex geo-
metrical shape and provides a great freedom in the choice of numerical approximations.
Regrettably, only finite difference and/or finite volume methods are usually discussed in
introductory courses, and most CFD codes are based on these methods. One of the rea-
sons for this state of affairs is the lack of self-contained elementary textbooks on finite
elements for fluids.

In 1994, the second author and his colleague Jari Jirvinen wrote a Finnish-language
guide to finite elements for CED (Elementtimenetelma virtauslaskennassa [95]) which be-
came a popular textbook at Finnish universities. The revised and extended second edition
appeared in 2006. The present text brings [95] up to date and adds a lot of new material.

The mission of our guidebook is to provide an informal introduction to finite element
methods for CED applications without burdening the reader with the underlying mathe-
matical theory. Instead of tedious proofs of convergence for the Poisson equation in a unit
square, the reader will find a clear and detailed presentation of state-of-the-art numerical
algorithms for convection-dominated transport problems and the incompressible Navier-
Stokes equations. The methods to be presented have been chosen among many others for
their accuracy, robustness, and simplicity. Moreover, the book will equip the reader with
a collection of fail-safe tools for enforcing physical constraints such as nonnegativity.

We anticipate that the readers of this book will have very diverse backgrounds. The
first chapters are written for beginners and present elementary concepts assuming no prior
knowledge of CFD or finite elements. The material covered in these chapters may be used
in undergraduate-level courses for students majoring in mathematics or computational en-
gineering. In the chapters that follow, basic methods are extended to increasingly complex
flow problems. Following a practice-oriented approach, numerical algorithms for repre-
sentative models are discussed in great detail. The best way to gain the full understanding
of these methods is to implement them. Simple problems can be solved using just a few
lines of MATLAB code. As a software development kit for more advanced applications,
we recommend the open-source finite element library Elmer developed at Finnish center
for scientific computing CSC-IT Center for Science (www.csc.fi/elmer). The sections de-
scribing Elmer in Chapters 2 and 5 were contributed by its chief developers Peter R3back,
Mika Malinen, and Juha Ruokolainen (CSC). The authors gratefully acknowledge this
contribution.

The book will guide the reader through all the steps that are involved in solving the
equations of fluid mechanics using continuous finite elements. The text is organized in
nine chapters. Chapter 1 introduces the basic notation and mathematical foundations.
Chapter 2 describes the general CFD philosophy and acquaints the reader with numeri-

vii
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Preface

cal methods for partial differential equations. In Chapter 3, some basic models of fluid
flow and heat transfer are derived from physical conservation principles. An introduction
to the Galerkin finite element method is given in Chapter 4 using the one-dimensional
heat equation as a model problem. Chapter 5 extends the presented concepts to the two-
dimensional heat equation and to the steady incompressible Navier-Stokes equations. In
Chapters 6 and 7, we present a self-contained review of stabilization techniques and high-
resolution schemes for convection-dominated transport problems. Chapter 8 addresses
the numerical solution of the time-dependent incompressible Navier-Stokes equations
and the implementation of the #—e turbulence model. In addition to numerous citations
throughout the book, the reader will find a list of books for further reading in Chapter 9.
To some extent, the eclectic choice of topics reflects the authors’ personal research inter-
ests and teaching philosophy. Nevertheless, we hope that this excursion into the realm
of finite element methods for CFD will be a useful experience for the reader and the first
step toward solving real-life problems.

Our own interest in finite element methods for CFD goes back to our graduate studies
at the University of Jyviskyld (Finland) in the 1990s. This book is an outcome of teaching
and research activities which have been greatly influenced by the feedback of our students
and colleagues. The methods and software that we develop are based on the work of
many other people. We express our sincere gratitude to all individuals with whom we
had the privilege to work during the last two decades. Special thanks go to Suncica Canic,
Roland Glowinski, Heikki Haario, Jari Jarvinen, Raino Mikinen, Pekka Neittaanmiki,
John Shadid, Friedhelm Schieweck, Mikhail Shashkov, Timo Tiihonen, Jari Toivanen,
Stefan Turek, and to our late advisor Valery Rivkind. We also wish to thank Markus
Himaldinen, the son of the second author, for bringing the figures from the 20-year-old
book [95] up to present-day standards. Last but not least, we thank our wives, Antonia
and Taija, for patience and understanding.

Dmitri Kuzmin Jari Himiliinen

Dortmund, Germany Lappeenranta, Finland
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Chapter 1

Notation and
Preliminaries

The mathematical models to be considered in this text are based on partial differential
equations (PDEs) ind € {1,2, 3} space dimensions. In this chapter, we introduce the basic
mathematical notation that will be employed throughout the book. We also review some
useful theorems of vector calculus and the basic definitions of functional analysis.

Blackboard bold capitals are commonly used to denote the sets of natural numbers N,
integers Z, rational numbers @, real numbers R, and complex numbers C.

Lowercase roman, italic, or Greek letters refer to scalar quantities. For example,
we denote the time variable by ¢ and use the standard notation x,,x,,x; or x,y,z for
the Cartesian coordinates of a point in the three-dimensional Euclidean space R*. Fur-
ther real-valued variables or constants may be named, e.g., 4,b,c or ,3,y. The letters
i,/ kyl,m,n are commonly reserved for integers (subscripts, superscripts, dimensions,
etc.).

Lowercase boldface symbols denote vectors, i.e., elements of R?. The individual com-
ponents of a given vector field are denoted by lowercase letters with subscripts. For ex-
ample, the boldface symbol x is just shorthand notation for

x=(x1,...,xd)T.

The subscript notation may also be used to pick out the nodal values of an approximate so-
lution defined on a computational mesh. Superscripts usually refer to time levels or itera-
tion steps. For example, f” & f(x;,t") may stand for the numerical value of a scalar func-

tion f at some point x; € R and time instant ¢” € R. If the computation of /" requires

several iterations, the provisional value calculated at the mth step is denoted by fl.('") .
Uppercase letters are reserved for matrices. The components of the square matrix

au e 4id
A=]| : .
agy .- 4gq

are denoted by 4;;, where i is the row number and ; is the column number.

The above subscript notation is also adopted for second-rank tensors denoted by bold-
face symbols with double overbars. The jth column of the tensor

01 O'ld
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Chapter 1. Notation and Preliminaries

. . — T . . . .
is given by the vector ¢, =(0,...,04;)" . Using this notation, we can write
o0=(0,...,0,).

The dot product and dyadic product of two vectors u,v € R? are defined by

d
uv=uv+-+u0, :Zuivt-

i=1

and
WU ... WUy

uRv= : . ;

72T ngvy
respectively. The dot product of a tensor & € R**¢ and a vector n € R? is a vector
= T
o-n=(¢,-n,...,0,-n),

while the double dot product of two tensors ,& € R¥*“ is a scalar quantity

=1 j=l

@i

o

The first and second derivative of a function f : R — R are denoted by f’(x) and

f"(x), respectively. The first partial derivative of f : R4 — R with respect to (w.r.t.) the

independent variable x. is denoted by L. The vector of first partial derivatives is denoted
P i Y 7% p

by
T
V=<i,...,i> .
axl axd

The gradient of a scalar-valued function f : R — R is defined as

w:(j_fgid)T

The Laplacian of f represents the sum of second partial derivatives

_duy du; ’
v U—a—xl'i- "I‘gx—d'—z——.

Note that the gradient of a scalar is a vector, while the divergence of a vector is a scalar.
In particular, it is easy to verify that V- Vf = Af, i.e., A = V2,



The gradient of a vector field u is a tensor containing all partial derivatives:

duy Juy
?x_] e yx_d
Va=] : =, i =(Vu1,...,Vud)T.
é’ud al{d
g; e gg

The divergence of a second-rank tensor ¢ is a vector field defined by the formula
V-e=(V-o,..,V-a,)".
A composition of two functions can be differentiated by the chain rule of calculus,
(fog)=(fog) g

where the prime mark is used to denote the total derivatives, i.e., the Jacobian matrices.
For example, let f = f(x,¢) be ascalar-valued function of the space coordinates x € R?
and time ¢ € R. The time rate of change along the path (x(¢),¢) is given by

df _
dr
In fluid dynamics, the trajectory x(¢) of a fluid particle moving with a prescribed
velocity u is determined by integrating the ordinary differential equation (ODE)
i _
dt
In this case, the so-called substantial derivative (alias material derivative)

Df _3f
Dt dt

coincides with the total time derivative of f(x,t) along the path defined by x(z).
The integral of f(x,t) over a time-dependent bounded domain §(¢) with a moving
boundary J€(t) evolves in accordance with the Reynolds transport theorem

d

— fdx _f fdx+ fu-nds, (1.2)
dt Joy o) 9 29()

+u-Vf (1.1)

where n denotes the outward-pointing unit normal vector. The surface integral can be
transformed into a volume integral using Green’s formula:

f fu-nds:Ju-Vfdx+f fV-udx. (1.3)
an Q Q

This useful identity represents a generalization of the integration-by-parts formula for
tunctions of a single real variable. Assuming that the flux g = fu isdifferentiable, Green’s
formula can be easily inferred from the divergence theorem

fV-gdx:f g-nds (1.4)
Q a9

and the generalized product rule

V-(fu)=u-Vf+fV-u. (1.5)



Chapter 1. Notation and Preliminaries

Knowledge of the above theorems and transformation rules is essential for the derivation
of mathematical models and numerical algorithms to be presented in this guidebook.

In our presentation, we tacitly assumed that all integrals and partial derivatives exist, at
least in a certain generalized sense. Thisassumption relies on the right choice of functional
spaces, so we close this chapter with some definitions from functional analysis.

Let © € R? be an open set. The space of functions that are square integrable in Q is
denoted by L%(€2). The formal mathematical definition of this space is as follows:

LZ(Q):{’UZQ—)R

f lo(x) > dx < oo}. (1.6)
Q

The space L2(€2) is a Hilbert space. The L? scalar product and norm are defined by

(w,v) = J;) w(x)v(x)dx, w,v € LX), (1.7)

|2]] = 4 fn |v(x)[2 dx, v € LXQ). (1.8)

Note that the value of ||7|| is finite by definition of the functional space L(£2), while the
value of (w,v) is finite by the Cauchy-Schwarz inequality

(@) <llwlllloll,  w0el*Q). (1.9)

The space of functions that are continuous on € is denoted by C(Q2) or C%(€2). If
all partial derivatives of order k € N exist and are continuous, the function belongs to
the space C*(£2). A function v is said to have compact support if v = 0 outside a bounded
subset (¥ C Q which hasa positive distance from the boundary J Q. The space of infinitely
differentiable functions that have compact supports is denoted by C$°(£2).

Generalized partial derivatives of a function v € L%(€2) can be defined using multipli-
cation by test functions w € C5°(f2) and integration by parts. Let ¢; € RY, ied,....d,
denote the ith unit vector in R?. If v is differentiable in the classical sense, the application
of Green’s formula (1.3) to the vector field u = ve; and scalar field f = w yields

do dw

—dx=—| —wodx. 1.10
ngx,- b aniv X (1.10)

The surface integral vanishes due to the assumption that w € C;°(f2) has a compact sup-
port.

In light of the above, it is natural to define a generalized (weak) partial derivative of
v € L}(Q) w.r.t. x; as a function d,v € L%(£2) such that

fw&}fudx:-— fué)ﬁdx Yw e C5°(Q). (1.11)
0 a 9x

Higher-order generalized partial derivatives are defined in a similar way. Let
a=(Qyy...yay)
be a vector of nonnegative integers. The sum of its components is denoted by

ol =y -+ ay.



List of Variables 5

In analogy to definition (1.11), a square integrable function

dlely

Diypm — —
axf‘...ax:‘

€ I3(Q)

represents a generalized (weak) partial derivative of order || if

f wD%y dx = (—1) J vD*wdx  Ywe CP(N). (1.12)
0 Q

If the partial derivative D*v exists in the usual sense of differential calculus, this formula
can be derived using repeated integration by parts. Thus, a classical partial derivative (if it
exists) is always equal to its generalized counterpart defined in the sense of distributions.

Since we are interested in solving PDEs, we will need to assume the existence of (at
least) first generalized partials. The Sobolev space

H\(Q) = {v e [AQ) | D*v € L{Q), |a| = 1}

contains all square integrable functions with square integrable first generalized partials.

If the function v is continuous on {2, its boundary values are defined by the restric-
tion v|,q. However, two functions v, w € L%(f) are equivalent if they differ on a set of
measure zero. By the trace theorem of functional analysis, there exists a bounded linear
operator

y HY(Q) - L}99Q): yv=v|;q VveH(Q)NC(K).

Hence, the trace yv represents a well-defined generalization of v|,(, to v € H'(Q). The
space of H! functions with vanishing traces on J is denoted by

H}(Q)={veH'()| yv =0}.

Generalized derivatives and Sobolev spaces are widely used in texts on functional analysis
and finite element methods for PDEs. We will also refer to them occasionally in this
guidebook and introduce additional definitions in the course of presentation.

List of Variables

a multi-index

correction factor

thermal expansion coefficient
boundary of a domain
Kronecker’s delta

emissivity, diffusion coefficient,
turbulent dissipation rate
strain rate tensor,

von Karman constant
dynamic viscosity

eddy viscosity

kinematic viscosity

limiter function

density

H

S

")qu’—j
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Chapter 1. Notation and Preliminaries

List of Variables, continued

a

:\:”h’“tﬁ@ Déﬂ AU 9ug
o
(e

a

<

e B3 M S S S+0Q 0o ™

[¢)

<<_‘x= ~ A @ ?Dd..c

=
+

List of Abbreviations

1D
2D
3D
ADI
ALE
AMG
BDF
BiCGStab
BW
CCS
CDR

Stefan-Boltzmann constant

constants in the k-¢ turbulence model
Cauchy stress tensor

stabilization parameter

Reynolds stress tensor

wall shear stress

bounded domain

specific heat capacity at constant pressure
constants in the k-¢ turbulence model
internal energy

roughness coefficient

numerical flux

flux, body force

gravitational constant

gravitational force

heat source, mesh size

heat transfer coefficient

effective heat transfer coefficient
identity tensor

heat conductivity, turbulent kinetic energy
unit outward normal

static pressure

Péclet number

heat flux

Reynolds number

source term

control surface

temperature

velocity

friction (shear) velocity

velocity

control volume

dimensional wall distance
dimensionless wall distance

one-dimensional
two-dimensional
three-dimensional

alternating direction implicit
arbitrary Lagrangian Eulerian
algebraic multigrid

backward difference formula
biconjugate gradient stabilized
Beam-Warming

compressed column storage
convection-diffusion-reaction
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List of Abbreviations, continued

CES
CFD
CFL
CG
CGS
CPU
CRS
cv
DAE
DC
DG
DMP
DNS
DOF
FCT
FDM
FEM
FSI
FVM
GLS
GMG
GMRES
GPU
GUI
ILU
LBB
LED
LES
LP
LW
MC
MPI
MOL
ODE
PDE
PGP
PPE
PSC
RANS
SD
SGS
ST
SOR
SU
SUPG
TDMA
TFQMR
TG
TVD

compressed edge storage
computational fluid dynamics
Courant-Friedrichs-Lewy
conjugate gradient

conjugate gradient squared
central processing unit
compressed row storage
control volume
differential-algebraic equation
discontinuity capturing
discontinuous Galerkin
discrete maximum principle
direct numerical simulation
degree of freedom
flux-corrected transport

finite difference method

finite element method
fluid-structure interaction
finite volume method
Galerkin least squares
geometric multigrid
generalized minimal residual
graphics processing unit
graphical user interface
incomplete lower-upper
Ladyzhenskaya-Babuska-Brezzi
local extremum diminishing
large eddy simulation
linearity preserving
Lax-Wendroff

monotonized centered
message passing interface
method of lines

ordinary differential equation
partial differential equation
pressure gradient projection
pressure Poisson equation
pressure Schur complement
Reynolds-averaged Navier-Stokes
streamline diffusion

subgrid scale

system of units

successive overrelaxation
streamline upwind

streamline upwind Petrov-Galerkin
tridiagonal matrix algorithm
transpose-free quasi-minimal residual
Taylor-Galerkin

total variation diminishing
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