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Preface

This English edition differs from the Russian original by the addition of a new
chapter. In this new Chapter 3 we give an account of the theory of train tracks
for automorphisms of free groups, which was developed in the seminal paper of
M. Bestvina and M. Handel [9]. Our exposition is more algebraic than in this paper,
but it is less technical than the account in the book [29] of W. Dicks and E. Ventura.
In Section 10 of Chapter 3 we consider two examples in detail. We have added
an appendix containing the famous Perron—Frobenius Theorem on nonnegative
matrices, which is used in this chapter. Also we have added solutions to selected
exercises.

The reader is assumed to have the knowledge of algebra expected after the first
semester of university (permutations, fields, matrices, vector spaces; see [23], [39]
or [55].

My sincere thanks go to Derek Robinson for invaluable help with the transla-
tion of this book and for useful comments that helped to improve the exposition.
I also like to thank Hans Schneider and Enric Ventura for their suggestions on the
improvement of the appendix and Chapter 3. Last but not least, I thank my wife
Marie-Theres for her constant support.

Dortmund, January 2008 0. Bogopolski



Preface to the Russian Edition

This book is an extended version of a course given by me at Novosibirsk University
from 1996 to 2001. The purpose of the book is to present the fundamentals of group
theory and to describe some nontrivial constructions and techniques, which will be
useful to specialists. The fundamentals are given in Sections 1-9 of Chapter 1; also
one can read Chapters 1 and 2 independently.

In Chapter 1 we quickly introduce beginners to the classification of finite simple
groups. It is shown that such complicated combinatorial objects as the Mathieu
group My, and the Higman—Sims group HS have a natural geometric description.
In Section 17 we describe the relationship between Mathieu groups and Steiner
systems with coding theory.

In Chapter 2 we describe the Bass—Serre theory of groups acting on trees. This
theory gives a clear and natural explanation of many results about free groups and
free constructions. We also explain the theory of coverings: the attentive reader
will see a bridge from one theory to the other. I hope that numerous examples,
exercises and figures will help to give a deeper understanding of the subject.

The reader is assumed to have the knowledge of algebra expected after the first
semester of university (permutations, fields, matrices, vector spaces; see [39]). In
addition, the fundamentals of group theory (especially abelian, nilpotent and solv-
able groups) can be read in the excellent book of M. I. Kargapolov and Ju. I. Merzl-
jakov [38].

I thank many colleagues whose comments helped to improve the content and
exposition of the material presented in this book. In particular I thank V. G. Bar-
dakov, A. V. Vasiljev, E. P. Vdovin, A. V. Zavarnitzin, V. D. Mazurov, D. O. Revin,
O.S. Tishkin and V. A. Churkin.

I thank M.-T. Bochnig for the help in designing this book.

Novosibirsk, May 11, 2002 0. Bogopolski
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Chapter 1
Introduction to finite group theory

1 Main definitions

A binary operation - on a set G assigns to any two elements a, b of G an element
of G denoted by a - b. A binary operation can be denoted not only by - but by any
other symbol, for example by +. Usually one writes ab instead of a - b.

A set G with a binary operation is called a group if the following holds:

1) the operation is associative, i.e., (ab)c = a(bc) for all a, b, ¢ in G;

2) in G thereis an element e —called the identity element —suchthatae = ea = a
for all a in G;

3) for each a in G there is in G an element b — called the inverse of a — such
that ab = ba = e.

The identity element can be denoted by 1 if the operation is denoted by -, and
it can be denoted by 0 if the operation is denoted by +.

1.1 Exercise. 1) The identity element of any group G is unique. Each element a
in G has a unique inverse (denoted by a™!).

2) For any element a in G, the mapping ¢, : G — G given by the rule ¢,(g) =
ag (g € G) is a bijection.

A group is called trivial if it only contains the identity element.

A group G is called abelian or commutative if ab = ba for any a, b in G. The
set Z of integers with the usual addition is an abelian group. Examples 1.3 show
that there exist nonabelian groups.

Two groups G and G, are called isomorphic (one writes G =~ G) if there
exists an isomorphism ¢: G — G, i.e., a bijection ¢ from G onto G such that
p(ab) = ¢(a)p(b) foralla, b in G.

Thanks to the associative law for groups, the product a;a; . ..a, of n elements
of a group does not depend on the bracketing. The product of n elements all equal to
a is denoted by a”. We define a® = e and @™ = (a~')™™ for negative integers m.

If a" = e for some n > 0, then the smallest n with this property is called the
order of the element a and is denoted by |a|. If a” # e for every n > 0, we say that
a has infinite order and write |a| = oco. The cardinality |G| of a group G is called
the order of G. If this cardinality is finite, then we say that the group is finite, and
in the contrary case infinite. A finite group G is called a p-group if |G| = p* fora
prime number p and an integer k > 1.

1.2 Exercise. 1) If a” = e, then |a| divides n.



2 Chapter 1. Introduction to finite group theory

2) If a and b commute, that is ab = ba, and their orders are relatively prime,
then |ab| = |a| - |b|.

A nonempty subset H of a group G is called a subgroup of G if for any a, b
from H the elements ab and a~! also lie in H. In that case we write H < G.
A subgroup H of a group G is itself a group under the restriction of the operation
of the group G. If H < G and H # G, then H is called a proper subgroup of G;
in symbols H < G.

Following the terminology of the textbooks [39], [55], we use the following
rule for composition of two mappings: (fg)(x) = f(g(x)). Thus we multiply
permutations from the right to the left.

1.3 Examples. 1) An isometry of the Euclidean plane is any mapping of the plane
onto itself, preserving the distances between any two points.

Let F be a figure in the Euclidean plane. The set of all isometries of the plane,
sending F' onto itself, is a group under the composition of isometries. This group
is called the symmetry group of F.

Let P, be aregular n-gon. The symmetry group of P, has exactly 2n elements:
n clockwise rotations through the angles 2—’? (k =0,1,...,n—1)about the center
of P, and n reflections across the lines, passing through its center and one of its
vertices, or through its center and the middle point of one of its sides. All rotations
in the symmetry group of P, form a subgroup, which is called the rotation group
of P,.

2) The set of all permutations of the set {1, 2, ...,n} is a group under the usual
multiplication of the permutations. This group is called the symmetric group of
degree n and is denoted by S,,. All even permutations in S,, form a subgroup which
is denoted by A, and is called the alternating group of degree n. The order of the
group S, is n! and the order of the group A, is n!/2 forn = 2.

3) The set GL, (K) of all invertible matrices of size n x n over a field K is a
group under the usual matrix multiplication. It is called the general linear group
of degree n over the field K. Its subgroup SL, (K) consisting of all matrices with
determinant 1 is called the special linear group of degree n over K. The group
SL, (K) contains a subgroup UT, (K) consisting of those matrices with all entries
below the main diagonal zero, and with the entries on the main diagonal equal to
the identity. This subgroup is called the unitriangular group of degree n over K.

It is known (see [39] or [55] for example) that a finite field is defined up to an
isomorphism by the number of its elements, and this number must be a power of
a prime number. Therefore if a field K contains exactly g elements, we will write
GL,(g) instead of GL,(K), and similarly for the other matrix groups.

1.4 Exercise. The symmetry group of a regular triangle is isomorphic to the
group S3.
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For any nonempty subset M of a group G the set
{ai'...air laieM, ¢ =x1, m=1,2,...}

forms a subgroup of G. This subgroup is called the subgroup generated by the set
M and is denoted by (M). It is easily seen that (M) is the smallest subgroup of G
containing the set M.

For ease of notations we write (a, b, ..., c) instead of ({a,b,...,c}) and we
say that this subgroup is generated by the elements a, b, . .., c. Some other simpli-
fications of notations are also allowed. For example, if A and B are two subsets of a
group G and c is an element of G, then we write (A, B, ¢) instead of (AU B U {c}).

A group is called finitely generated if it can be generated by a finite number of
elements.

A group G is called cyclic if in G there exists an element @ with G = (a). In
this case G = {a" | n € Z}. Notice: it may happen that a” coincides with a™ for
some n # m. In that case G is finite. An example of an infinite cyclic group is the
group Z of all integers under the usual addition (as a one can take 1 or —1).

Letn = 1be anatural number. To each integer i there corresponds the remainder
on division of i by n, i.e., an integer i suchthat0 <i <n—1landn | (i —i). Itis
easy to verify that the set Z,, = {0, 1,...,n — 1} with the operation @, defined by
therulei @ j =i + j,isacyclic group generated by 0if n = 1 and by 1 ifn > 1.

1.5 Exercise. The rotation group of a regular n-gon is isomorphic to the group Z,,.

1.6 Theorem. Any infinite cyclic group is isomorphic to the group Z, and any finite
cyclic group of order n is isomorphic to the group Z .

Proof. Let (a) be an infinite cyclic group. Define a mapping ¢: Z — (a) by the
rule (i) = a'. Clearly, o + j) = ¢@i)e(j) and ¢ is onto. Moreover, ¢ is
injective: if we had @’ = a/ for some i < j, then a/~ = e and the group (a)
would contain only the elements e, a, .. .,a’ !, which is impossible. Therefore
@ is an isomorphism.

If (a) is a cyclic group of order n, then the mapping ¢ : Z,, — (a), given by the
same rule (i) = a’, is an isomorphism. O

An arbitrary infinite cyclic group will be denoted by Z and an arbitrary finite
cyclic group of order n will be denoted by Z,.

1.7 Theorem. Any subgroup of a cyclic group is cyclic.

Proof. Let (a) be a cyclic group. Clearly, the trivial subgroup is cyclic. Let H
be a nontrivial subgroup of (a) and let m be the smallest positive integer such that
™ € H. Clearly (a™) < H. We will prove that (a™) = H. An arbitrary element
of H has the form a*. Dividing k by m, we getk = mq +r, 0 < r < m. Then
a’” = a¥@™)™ € H. By the minimality of m it follows that r = 0. Hence
k= (@™ e (a™). O
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1.8 Exercise. 1) The order of any subgroup of Z, is a divisor of n. Moreover, for
any divisor d of n there exists a unique subgroup of Z,, of order d.

2) The number of solutions of the equation x* = 1 in the group Z,, is equal to
gcd(n, k), the greatest common divisor of # and k.

The center of a group G is the subset
Z(G)={zeG|zg=gzforall g € G}.

Clearly Z(G) is a subgroup of G and G is abelian if and only if Z(G) = G.

The commutator of two elements a and b is the element aba~5~!. We denote
it by [a, b]. The commutator subgroup or derived subgroup of a group G is the
subgroup G’ = ([a,b] | a,b € G).

We say that an element a of a group G is conjugate to an element b by an element
gifa = ghg™!. Similarly, we say that a subgroup A of a group G is conjugate to
a subgroup B by an element g if A = {ghg™' | b € B}. This set will be denoted
by gBg~!. Itis easy to verify that the orders of conjugate elements (subgroups)
are the same.

The conjugacy class of an element b of a group G is the set of all elements in G
which are conjugate to . The group G is divided into disjoint conjugacy classes,
one of them being {e}.

An automorphism of a group G is an isomorphism of G onto itself. The set of all
automorphisms of G with functional composition is a group, denoted by Aut(G).

1.9 Exercise. 1) Prove that Aut(Z) =~ Z,.

2) Find the center, the commutator subgroup and the conjugacy classes of the
permutation group S3.

3) Prove that S, = ((12), (13),..., (1n)).

4) Prove that the group Q of rational numbers under addition is not finitely
generated.

2 Lagrange’s theorem. Normal subgroups and factor groups

Let H be a subgroup of a group G. The sets gH = {gh | h € H}, where g € G,
are called left cosets of the subgroup H in the group G. Right cosets H g are defined
similarly. It is easy to verify that

g1H = g2H ifandonlyif gy'g, € H.

2.1 Example. The set of all left cosets of the subgroup {e, (12)} in the group S3
consists of

{e,(12)}, {(13),(123)}, {(23),(132)}.
The set of all right cosets of the subgroup {e, (12)} in the group S3 consists of

le.(12)},  {(13),(132)}, {(23),(123)}.
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The correspondence xH < H x~! is one-to-one, and therefore the cardinality
of the set of left cosets of H coincides with the cardinality of the set of right cosets
of H. This cardinality is called the index of the subgroup H in the group G and is
denoted by |G : H|.

2.2 Theorem (Lagrange). If H is a subgroup of a finite group G, then
|G| =|H]|-|G : H|.

Proof. Since g € gH , the group G is the union of the left cosets of H in G. Any two
different cosets have empty intersection: if g1 H N g, H # &, then g1hy = gah»
for some hy,h, € H andso g1 H = g2h2h1_1H = g, H. It remains to notice that
these left cosets have the same cardinality: a bijection H — gH is given by the
rule h — gh,h € H. O

2.3 Corollary. 1) The order of an element of a finite group divides the order of this

group.
2) Any group of prime order p is isomorphic to the group Zp.

Proof. If g is an element of a finite group G, then |g| = |(g)| and |(g)| divides |G]|.
In particular, if |G| = p is a prime number and g # e, then |(g)| = |G|, hence

The product of two subsets A and B of a group G is defined as AB = {ab |
ae€ A, be B} Let H< G and g € G. Then the product {g}H coincides with
the left coset gH . Moreover, we have HH = H.

We say that a subgroup H of G is normal in G and write H < G if gH = Hg
forevery g € G. Let H < G. Then the product of any two cosets of H in G is
again a coset of H in G:

g1H -g2H = g1(Hg2)H = g1(g2H)H = g182H.

The set of all cosets of H in G with this product forms a group. Its identity
element is the coset H, the inverse of the coset x H is the coset x~' H. This
group is called the quotient group or the factor group of the group G by the normal
subgroup H and is denoted by G/H. By Lagrange’s theorem, if G is finite then
|G| =|H|-|G/H|.

2.4 Example. The subgroup K = {e, (12)(34), (13)(24), (14)(23)} of S4 is nor-
mal and

Ss/K ={K, (12K, (13)K, (23)K, (123)K, (132)K} = S;.

2.5 Exercise. 1) Prove that Z(G) < G, G’ < G and G/ G’ is an abelian group.
2)IfHy < H<G,then|G: H|=|G:H|-|H: Hy|.
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3) If H is a subgroup of index 2 in a group G, then H < G.

4) The product of any two subsets H1, H of a group G need not be a subgroup,
even if both H; and H> are subgroups. If both H; and H, are subgroups and one
of them is normal in G, then H; H> is a subgroup in G. If both subgroups H; and
H); are normal in G, then the subgroup H; H is also normal in G.

5)If A, B are finite subgroups of a group G, then

_ |A]-|B|
|[ANB|’

|AB|

3 Homomorphism theorems

A mapping ¢ from a group G to a group G is called a homomorphism, if p(ab) =
p(a)p(b) for every a,b € G. The kernel of the homomorphism ¢ is the set
kero = {g € G | ¢(g) = e}. The image of the homomorphism ¢ is the set

img = {p(g) | g € G}.

3.1 Exercise. Let 9: G — G be ahomomorphism. Then the following assertions
are valid.

) gle) =e,0(g™") = (¢p(g)) ' for g € G.

2) If g € G is an element of a finite order, then |p(g)| divides |g].
3) kerp < G,imgp < Gy.

4) For any two nonempty subsets A, B of a group G holds!

9(A) =¢p(B) <= A-kerp = B -kerg.

3.2 Example. 1) Let K* be a multiplicative group of a field K, i.e., the group of
all its nonzero elements under multiplication. The mapping ¢: GL,(K) — K*,
assigning to a matrix its determinant, is a homomorphism with kernel SL, (K).

2) Let H < G. The mapping ¢ : G — G/H given by the rule ¢(g) = gH is a
homomorphism with kernel H.

Given asubgroup H of agroup G, we denote by L (G, H ) the set of all subgroups
of G containing H . In particular L(G, {1}) is the set of all subgroups of the group G.
3.3 Theorem. Let ¢: G — G; be a homomorphism onto a group G1. Then

1) the mapping ¥ : L(G,ker¢) — L(G1,{1}), sending a subgroup from the
first set into its image under ¢ is a bijection;
2) this bijection preserves indexes:

ifker(p < H; < H;, then |H2 : H]l = I(ﬂ(Hz) : (p(Hl)I,

'We use the notation ¢(4) = {@(a) | a € A}.
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3) this bijection preserves the normality:
if kero < Hy < Hy, then Hy < Hy, < ¢(H;) < ¢(H>).

Proof. 1) The mapping V¥ is onto, since the full preimage of the subgroup of the
group G is a subgroup of G containing ker ¢. The mapping is one-to-one: this
follows from Exercise 3.1.4 and the fact that H - ker ¢ = H for any subgroup H
of the group G containing ker ¢.

2) The mapping from the set of the left cosets of H; in H; to the set of the
left cosets of ¢(H;) in ¢(H>), given by the rule x H; — ¢(x)@(H1), is onto. The
mapping is one-to-one since ¢(xHy) = ¢(yH;) implies x H; -ker ¢ = yH; -ker ¢,
thatis xH, = yH;.

3) We have H; -ker¢p = H; and x - kergp = ker¢ - x for x € G. Therefore
the condition xH; = Hjx is equivalent to xH; - ker¢ = H;x - ker ¢, which is
equivalent to ¢(x)@(H1) = ¢(H;)p(x) because of Exercise 3.1.4. O

3.4 Theorem. If ¢: G — G; is a homomorphism, then G/ ker ¢ = im ¢.

Hint. The isomorphism is given by the rule g ker¢p — ¢(g), g € G.

3.5 Theorem. Let A < B < G, A < G, B <G. Then B/A < G/A and
(G/A)/(B/A) =~ G/B.

Hint. Apply Theorem 3.4 to the homomorphism ¢ : G/A — G/ B given by the rule
gA — gB.

3.6 Theorem. Let H < G, B < G. Then BH/H ~ B/BN H.

Hint. The homomorphism¢: BH — B/BNH givenby therule bh — b(BNH),
b € B, h € H, has the kernel H.

Finally we explain some terminology. A homomorphism ¢: G — G is called
an epimorphism if its image is equal to G;. A homomorphism is called a monomor-
phism (or an embedding) if its kernel is trivial. The group G is embeddable into the
group G if there exists an embedding of G into G;. Obviously, an isomorphism
is an epimorphism and a monomorphism simultaneously.

4 Cayley’s theorem

For any set M we denote by S(M) the group of all bijections of M onto itself, i.e.,
permutations of M. If the cardinality m of M is finite, then we can identify the
group S(M) with the group Sy,.
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4.1 Theorem (Cayley). Let H be a subgroup of a group G and let M be the set of
all left cosets of H in G. Define the mapping ¢ : G — S(M) by the rule: for any
g € G the permutation ¢(g) sends a coset xH to the coset gxH.

Then ¢ is a homomorphism (not necessarily onto) with kernel

kerp = () xHx™L.

x€G

Proof. Clearly ¢(g182) = ¢(g1)¢(g2) since g182(xH) = g1(g2xH) for any
x € G. Moreover,

gekerg < (xH = gxH forall xH) <= (g e xHx 'forallx). O

If H = {1}, the homomorphism ¢ from Cayley’s theorem is called the (left)
regular representation of the group G.

4.2 Corollary. 1) The regular representation of a group G is an embedding of the
group G into the group S(G). The image of any nontrivial element of G under this
embedding is a permutation, which sends each element of G to a different element
of G.

Any finite group G can be embedded into the group S,, where m = |G|.

2) Any finite group G can be embedded into the group GL, (F), where F is any
field and m = |G|.

Proof. The first claim follows from Cayley’s theorem, the second from the first,
using the embedding of S,, into GL,,(F) given by the rule 0 — A,, where
(Ag)ij = 1ifo(j) =i and (Ay);; = O otherwise. O

4.3 Exercise. Any group of order 4 is isomorphic to the group Z4 or to the group
K = {e, (12)(34), (13)(24), (14)(23)}.

Solution. Let G be a group of order 4. We identify G with its image under the
regular representation into S4. Then any nontrivial element of the group G is either
a cycle of length 4, or the product of two disjoint transpositions (otherwise a fixed
element would appear). If G contains a cycle of length 4, then G =~ Z, and
otherwise G =~ K.

4.4 Corollary (Poincar€). Every subgroup H of finite index m in a group G contains
asubgroup N which is normal in G and has finite index k such thatm |k and k | (m!).

Proof. We set N = ker ¢, where ¢ is the homomorphism from Cayley’s theorem.
Let k = |G : N|. By Theorem 3.4, k = |[im ¢|. Since im ¢ is a subgroup of the
group S,,, we obtain k | (m!). The claim that m | k follows fromkerp < H < G
with the help of Exercise 2.5.2. O



