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List of Abbreviations

A angstrom (107'°m)

AC alternating current

AD anaerobic digestion

Btu British thermal unit (1055])

BWEA British Wind Energy Association

CA constant amplitude

CEGB Central Electricity Generating Board

CETESB Sao Paulo State Environmental Agency

CFD computational fluid dynamics

CO,-eq carbon dioxide equivalent

COD chemical oxygen demand

CSM chopped strand mats

CSpP concentrating solar power

CSTR continuously stirred tank reactor

DC direct current

DDWT direct-drive wind turbine

DEF Danske Elvarkers Forening (Association of Danish Electricity
Works)

DFIG doubly fed induction generator

DHA docosahexaenoic acid

DME dimethylether

DVES Dansk Vind Elektricitets-Selskab (Danish Wind Power Association)

EAWAG Swiss Federal Institute for Environmental Science and Technology

EMBRAPA Brazilian Agricultural Research Corporation

EMEC European Marine Energy Centre

EPA eicosapentaenoic acid

FCV fuel cell vehicle

FFA free fatty acid

FFV flexible fuel vehicle

FT Fischer-Tropsch

GEF Global Environment Facility

GGWT geared generator wind turbine

GHG greenhouse gas

GRP glass fibre-reinforced plastics

HMF 5-hydroxymethyl-2-furfural

HRT hydraulic retention time

ILO International Labour Organization

LEC levelized electricity cost

MSW municipal solid waste
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mtoe million tons of oil equivalent

MTTEF mean time to failure

MTTR mean time to repair

NEDO New Energy and Industrial Technology Development Organization
(Japan)

O&M operation and maintenance

OFMSW organic fraction of municipal solid waste

OLR organic loading rate

(0N offshore solar pond

OTEC ocean thermal energy conversion

OowC oscillating water column

PALF pineapple leaf fibre

PHA polyhydroxy alkanoate

PLA polylactide

PM particulate matter

PM permanent magnet

PUFA polyunsaturated fatty acid

R&D research and development

RANS Reynolds-averaged Navier—Stokes

RBD reliability block diagram

rpm revolutions per minute

RTD research and technical development

SD standard deviation

SEAS Sydestsjellands Elektricitets Aktieselskab

STE solar thermal electricity

TEP tidal electric power plant

TS total solids

UNICA Sugarcane Industry Association (Brazil)

VA variable amplitude

VFA volatile fatty acid

VS volatile solids

WAsP Wind Atlas Analysis and Application Program

WEC wind energy converter

WEG wind energy generator

WISPER Wind SPEctrum Reference

WwWT wind turbine
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