PROBLEM SOLVERS

complex
numbers

J.Wi LLIAMS




Complex Numbers

J. WILLIAMS

Senior Lecturer in Applied Mathematics
University of Exeter

LONDON - GEORGE ALLEN & UNWIN LTD

RUSKIN HOUSE MUSEUM STREET



First published in 1972

This book is copyright under the Berne Convention.

All rights are reserved. Apart from any fair dealing for the
purpose of private study, research, criticism or review, as
permitted under the Copyright Act, 1956, no part of this
publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means. electronic,
electrical, chemical, mechanical, optical, photocopying
recording or otherwise, without the prior permission of the
copyright owner. Enquiries should be addressed to the
publishers.

© George Allen & Unwin Ltd, 1972

1SBN 0 04 512018 8 hardback
004 512019 6 paper

Printed in Great Britain
in 10 on 12 pt ‘Monophoto’ Times Mathematics Series 569
by Page Bros. (Norwich) Ltd., Norwich



Problem Solvers
Edited by L. Marder

Senior Lecturer in Mathematics, University of Southampton

No. 6

Complex Numbers



Problem Solvers

ORDINARY DIFFERENTIAL EQUATIONS —J. Heading
CALCULUS OF SEVERAL VARIABLES — L. Marder
VECTOR ALGEBRA — L. Marder

ANALYTICAL MECHANICS —D. F. Lawden
CALCULUS OF ONE VARIABLE— K. Hirst

COMPLEX NUMBERS —J. Williams

VECTOR FIELDS — L. Marder

MATRICES AND VECTOR SPACES — F. Brickell

PN LR LN~



Acknowledgements

Thanks are due to Dr J. Herzsberg, Mathematics Department,
Birbeck College, University of London, for the care with
which he read the manuscript and for making many helpful
suggestions; to colleague Miss L. G. Button for her helpful
comments; and to Miss J. Knowles for her help towards typing

the manuscript.



Contents

THE ALGEBRA OF COMPLEX NUMBERS
Definitions page
Algebraic operations
The imaginary quantity 7
The complex conjugate
Inequalities

s Wi —

2 THE GEOMETRY OF COMPLEX NUMBERS
2.1 Geometrical representation

2.2 Reflection

2.3 Magnification

2.4 Rotation

2.5 Addition

2.6 Multiplication

2.7 Division

2.8 Equation of a circle

2.9 Equation of a straight line

3 APPLICATIONS OF COMPLEX NUMBER OPERATIONS

3.1 De Moivre's theorem for an integral index

3.2 Summation of series

3.3 The values of (cos ) —isin 0)!", n integral

3.4 Roots of zP = a +ib, p = m/n, m, n positive integers

3.5 The nth roots of unity

3.6 Equations with roots in the form of trigonometrical functions
3.7 Factorization

4 ELEMENTARY TRANSCENDENTAL FUNCTIONS
4.1 The exponential function and circular functions
4.2 The hyperbolic functions

4.3 Logarithm of a complex number

4.4 The power of a complex number

4.5 Infinite series

S THE ELEMENTS OF MAPPING

5.1 Introduction

5.2 Bilinear mapping

5.3 The mapping L — ="

5.4 The combination of { = z? with the bilinear transformation

INDEX

[ )N SN SN N

14

15
15
15
16
17

21

58

64

67
68

70
75
81
83

88



Chapter 1
The Algebra of Complex Numbers

1.1 Definitions

1.1 An ordered pair of real numbers x, y, denoted by the symbol [x, y],
is termed a complex number z = [x,y]. The order is important, for

[x,y] # [y, x] unless x = y.
12 Ifz = [x,y], we define —z by [ —x, —y]
13 We define the zero complex number by [0,0] and denote it by 0.

1.2 Algebraic Operations We define the following algebraic operations:

Addition. When z, = [x,,y, ] and z, = [x5, )],
zy+2; =[x, 0]+ %2, 2] = [x1 4+ %2,y +y2 ]
=[xz, 2]+ [x1,31] = 222, (1.1)
1.e. the commutative law of addition is satisfied. It follows also that when
z3 = [x3,¥3],
(zy+2z3)+z3 = z,+(z,+23).
i.e. the associative law of addition is satisfied.

Subtraction. z;—z, = [x;,y]—[x2.9.] = [x;—x2,y1—y2] (1.2
from which it follows that z; —z, = z, +(—z,) using Definition (1.2).

Equality.z, = z,,when z, —z, = 0, i.e. using (1.2) with Definition (1.3),
[x,p:] = [x2,y2]<x; =x, and y; =y,. (1.3)

Multiplication. (1) A real number a, with a complex number:
a[x,y] = [ax,ay]
(i1) Two complex numbers: (1.4)
zvzy =[xy, 0 1% [x2, 2] = [x1 X2 =Yy Y20 X Y2+ 91 X5 ]
= [x2, 02 x[x1, 0] = 252
so that multiplication follows the commutative law. Furthermore,

(zyxz,)xzy =2z, x(z,xz,) (see Problem 1.1), so that the associative
law also applies to the operation of multiplication. Also

(z1+23)x23 = 2y xz3+2, X 24



(The proof of this is left to the reader) so that the distributive law is
satisfied.
Note: For the product of z, and z, we use z; x z, or z, - z, or even z, z,.
Division. If z, # 0 we define z, + z, (also written z, /z, ) as the complex
number [o, 8], i.e. [x;,y, ]+ [x2,y,] is defined as the complex number
[o, B] where [a, ] x [x5,¥5 ] = [x;, ¥, ]- Using (1.4), the equations which
determine o,  (uniquely) are
ax, — By, = x4 and ay,+PBxy = yi,
Xy Xo+y1 Yo X Vi T X )
X343 X3 +y3
unless x, and y, are both zero. Consequently, provided [x,, y,]| # [0,0],
the quotient z,/z, is uniquely determined by
i:[xn.Vl] | X1 X2t Vi) xz.VI'x1,V2] (1.5)
z;  [x2.)2] X3+ | x3+» ‘ '
Problem 1.1 Prove the associative law of multiplication,
ZyX2Zy)x 23 = 2y X(2,X23)

whence o =

>

Solution. Using (14), z,z, = [X,Y], where X = x;x;—y, ),
Y = x; y,+y, x;;and (2, z;) z3 = [L,M] = [X, Y] [x5,y5]. Then

L= Xx3—Yy; = X XoX3— Y V2 X3— X1 V2V3 =) X33

= X'x,—Y'y,
where X' = X,X3—Y2V3, Y' = y, X3+, y;
M = Xy;+Yx3 = X, X 3= V1 V2 V3 + X1 Yo X3 +Y; X, X3
= X'y, +Y'x,

so that [L,M] = [x,,y,][X, Y]

But  [X.Y] = [x;X3—y2¥3,V2X3+X3 V3] = [x2, 92 ] [X3,¥3] O
from which the result follows.

Problem 12 Evaluate (a) [3,—2]+[2 —3], (b) [3,—2]—[2 —3],
(©[3, — 2]2 — [2, - 3]2.

Solution.
(@) [3, —2]+[2,-3] = [3+2, —2+(—3)] =[5, —F5]
(b)[3,-2]-[2,-3] =[3-2,-2—(-3)] = [1,1]
(©) [3,—2]* = [3, —2] x[3, -2] ,
=[3.3—(—-2).(—=2),3(=2)+(-2).3] =[5, —12]
[2, =3]% = [2, —3]x[2,-3]
= [2.2—(=3).(=3),2(=3)+(-3).[ -5, —12].



Hence [3, —2]*—[2, —3]* =[5, —12]—-[-5, —12]
= [5—(—5), —12—(—12)] = [10,0].
Alternatively, factorizing and using (a) and (b),
[3, =21 —[2, -31* = {[3, -2]+[2, -3} x {[3. —-2]-[2. - 31}
=[5 =5]x[1,1]
=[5.1-(-5).1,5.1+(=5).1] = [10,0]. O
Problem1.3 Evaluate (a) [cos 0, sin 6] x [cos ¢, sin ¢], (b) [cos 6, sin ] +

[cos ¢, sin ¢], (c) [cos B, sin 8]", where n is a positive integer.
Solution.

(a) [cos 0, sin 0] x [cos ¢, sin ¢ ]
= [cos 6 cos ¢ —sin 0sin ¢, sin 6 cos ¢ + cos O sin ¢ ]
= [cos(0+ ¢),sin(0+ ¢)].

(b) [cos 0, sin O]+ [cos ¢,sin @] = [o, f] wherecos ) = acos ¢p—fsiny
sin @ = asin ¢ + ff cos ¢. Solving for o and  we have

o = cosfcos¢+sinfsing = cos(0— @)
B = sinf cos ¢ —cos Osin ¢ = sin(6 — ¢)
so that  [cos®,sin 8]/[cos ¢,sin ¢p] = [cos(d — @), sin(0 — ¢)].
If we multiply both sides by the denominator of the left-hand side, (which
is not [0,0] since cos ¢, sin ¢ cannot be simultaneously zero), we have,
using (a),
[cosB,sin 0] = [cos ¢, sin @] [cos(0 — @), sin(0 — ¢)
= [cos(¢p+0—¢),sin(¢p+60—¢)] = [cosb,sinO].
(c) When n = 1, the result is obviously [cos 6, sin 0].
For n = 2, using (a),
[cosB,sin8]* = [cos 6,sin O] [cos 0,sin 0] = [cos 26, sin 20].
Forn = 3,
[cos0,sin0]* = [cos 6,sin 6] [cos 6, sin 0]
= [cos 20, sin 26] [cos 6, sin @] = [cos 36, sin 30].
These results suggest a general result of the form [cos6,sin6]" =

[cos nf, sin n@]; it is certainly true for n = 1,2 and 3. If it is true for some
positive integral value n, this formula is true for n+ 1, for using (a) again,

[cosO,sin0]"" ' = [cos 6, sin 0]"[cos 6, sin 6]
= [cos nb, sin nf] [cos 0, sin 0]
= [cos(n+1)0, sin(n+ 1)6],



i.e. the result if true for n is also true for n+1 and since it is true for n = 3,
it is true for n = 4 and so on for any positive integer n. Consequently,
when n is a positive integer,

[cos 0,sin 6]" = [cos nb, sin nd]. O

1.3 The Imaginary Quantity i Suppose that we consider the complex
numbers z, = [x,,0], r =1, 2 then z,+z, = [x; + x,,0], z,z, =
[x,,x,,0]andifx, # 0,z,/z, = [x,/x,,0], i.e. these numbers behave ina
similar way to real numbers under the ordinary algebraic operations.
Hence we can identify the complex number [x, 0] with the real number x.
Moreover, [0,y]" = [0,y][0,y] = [—»°.0] = —)" a negative real
number i.e. [0, v] cannot be identified with any real number. This suggests
that we write the complex number = = [x, y] in the form = = x+iy where
i is a non-real number and is therefore, not equatable to any real number.
This implies that
X, +iy; = X, +iy, < x; = x,and y, = y,.

We stipulate that the quantities x, , x,, iy, , iy, when added or multiplied
obey the seven fundamental laws of algebra so that

(g iy )+ (xa+iy, ) = (X +x5 )+ iy, +y,),

or. (x50 1+ (%2, ¥2] = [xy+x0, 90 +92 ]
Again, (x;+iy, ) +iy,) = X X+ Y, Y202+ yo+y; x5)i. If we
stipulate that i* = —1, the right-hand side representing the product is

Xy Xy =Yy Y2+ (X Y2ty X,)is
so that we retrieve the multiplication rule

[x, 90 1 [x2, 921 = [X1 X2 =Yy Y2, Xy ¥2 + Y1 X5 ]-
Since, when x is a real number, x? is never negative, it follows that i is a
non-real or imaginary number. Furthermore, both z = i and z = —i are
roots of the equation z? = —1.

Definition 1.4 When z = x+ iy, we refer to as the real part of z, whereas
y (which is a real number) is called the imaginary part of this complex
number z.

We write x = Rez, y = Imz Thus when z = 2+i, Re(2+1i) = 2,
Im(2+i) = 1. z is purely real if y = 0 and purely imaginary if x = 0.

1.4 The Complex Conjugate

Definition 1.5 Given any complex number z = x+ iy, the conjugate
complex number written as Z, (or sometimes z*) is defined by z = x —iy,
i.e. to find the conjugate, simply change the sign of the imaginary part,
eg whenz = —2+43i,z = —2-3i.
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Formulae involving conjugates are:

(1.6) () z=1:z or Z*¥¥* = 2z, (i) z=z<Imz =
(iii) z, 4z, = z,+2, (iv) z, 2, = Z,2,
) (z,/z;) = 2,/Z, (vi) Rez = Rez = {(z+32)
(vii) Imz = —Imz = 3(z—2)i.

The proofs of (i) to (vi) are elementary and are left as an exercise for the

reader.
‘I we important quantities which can be used to define complex numbers

in place of the real and imaginary parts are the modulus and argument.

Definition 1.6 1f in = — x—i we write x = rcosf, y = rsin@, where
ris the non-negative value of \/(x* + y?), this quantity r is called the modulus
of z. We write

r=|z| = modz, z = rcosfO+irsin0,
(Note that r = 0 < x = 0 = y).

Definition 1.7 Given x and y, not both zero, and z = x+ iy, any value
of 0 (measured in radians) satisfying both cos@ = x/r, sinf = y/r, is
called an argument of z, and is written

0 = Argz, (with capital A).

The one value of 6 which lies in the interval —n < 0 < 7 is defined to be
the principal value of the argument and is written

0 = argz, (with small a).

It is obvious that Argz = argz+2nn where n is some positive or
negative integer. When n is known Arg z could be written arg, z. It follows
that the principal value of the argument of a real number is 0 if the number
is positive and =z if the number is negative. The argument of zero is un-
defined.

Formulae involving moduli and arguments are:

(1.7) (i

| =z =]

)21

ii) |z, / 2l =z lllz|, 2z #0.
(iii)|:"| |z | n integral.
(V) |z]? = |Z|* = z2 = r* = x>+~

(v) Arg(z, z,) = Argz, +Argz,, z; # 0, z, # 0, i.e. any value of
Arg z, gives a value of Arg(z, z, ) with a similar interpretation.

(vi) Arg(z,/z,) = Argz, —Argz,, z, # 0,z, # 0.



(vii) arg(z, z,) = argz, +argz,+20m, z; # 0,2, # 0 where 0 =
—1,0,1accordingasn < ¢ <2m,—n < ¢p<mor—2n < ¢ <
—7 where ¢p = argz, +argz,.

(viii) arg(z,[z,) = argz, —argz,+20m, z; # 0, z; # 0, where 0 =
—1,0,1 according as argz, —argz, = ¢ satisfies 7 < ¢ < 2m,
—n<¢p<mor—2n< ¢ < —m.

(ix) arg z" = nargz+2pn, z # 0, n integral, where p is an integer
satisfying —n < nargz+2pn < m.

Except for (i) and (v) we leave the proofs to the reader. To prove (i) and (v)
we write
zy = ry(cosO+isinf),  z, = ry(cos¢+isin@).
Using Problem 1.3(a) we have
2,2, = 1y ry{cos(0+ @) +isin(@+ @)},
|zyz,| = ryry = |z, llz2| and  Arg(z, z,) = 0+¢ = Argz, +Argz,.

1.5 Inequalities Whereas real numbers form an ordered system in which
we can write a>, =, or <b when a and b are real, this property does not
extend to complex numbers, i.e. we do not write z, > z,, for it has no
meaning. However, the real numbers Re z, Im z or | z| formed from a com-
plex z do possess the property of order. Formulae involving inequalities
are:
(1.8) (i)Rez < |Rez| < |z].

(i) Imz < [Imz| < |z].
(i) |z, + 25| < |z, |+]|z2 |, the triangle inequality.

(iV)IZ\! |+]z | 2\ |z, =2, 2 |z, |-

Zn | .

(v)] S | < Y |z,|. the extension of (iii).
n=1 n=1
n—1
(Vi)‘:"ﬁzl‘ S z ':m*l_:nll'
m=1
Proof of (i), (ii) follows from |z| = (Re? z+1Im?z)*. To prove (iii), we
have .
|zi+2, |2 = (2, + 2, )2, + 2,)

=2121+2,2,+2,2,+2, Z

= |z, |*+|z,|*+2Rel(z, Z,)

<z PH]|z2 |2 42z 22| = (20 | +] 22 2,
ie. |z, +z,| <|z,|+]|z, | Again, the proofs of the others are left to the
reader.
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Problem 1.4 Simplify (i) (7 + i) (4 — i), (ii) (7 + i)/(4 — i), (i11) [(1 + 2i)/2 + i) ]°.
Solution
(i) (7+i)(@4—i) = 28+4i—7i—i* = 28=3i+1 = 29-3i.

. 7+i T+il[4+i 284+4i+7i+i  28+4+11i—1
o i——i:[4—i][4+i]: t6— 17
27+ 11i
= 17 .

42T 143Q043Q0P+QIF  1+6i—12—8i
(in) 2+ P 13.2%5+3. 20+ 8+ 12i—6-i

B 1142 B 1M+2i||2—11i
B 24+ 11i| 2+ 11i|| 2—11i

_ 224+4i—121i+22 _-44+117i
44121 128
. 1+2i  142i[2—i 2+4i—i+2  4+3i
Alternatively, — = | =—1 = = ,
2+i 240 2—i 4+ 5
142i ? 4430 P 434+3.4%3i)+34(3i)> +(3i)}
so that —| = =
2+i 5 125
- 64 +144i— 108 —27i B —44+117i bef
— 125 = 125 , as belore.

Problem 1.5 Express (1+i)1+iy/3)(y/3—1) in the form a+ib (a.b both
real) and find its modulus and argument.

Solution.

a+ib = (1+ i1 +iy/3)0J/3—1) = (1 +iNJ3+3i—i+/3)
= 2(14+iN/3+i0) = 2{{/3—-1+i(/3+1)},
ie.a = 2(/3—1),b = 2(J3+1).Ifr = mod(a+ib), 0 = arg(a+ ib), where
—n <0< mthenrcost) = a=2(3—1),rsinl) = b = 2(,/3+1). and
rP=a’+b> = 4{(J3- 1) +(J/3+ 1)} = 8{(J/3)*+1} = 32.

Hence r =4./2 = |a+ib|, cosO = §/2(/3—1), sin0 = /2(/3+1).
At this stage we can either refer to tables of the trigonometrical functions
to obtain the result 6 = 57/12 or using sin 20 = 2 cos 0 sin ) = 4 we deduce
that 20 = in or 27.

Now, to decide which root gives the correct value for 6, we evaluate
cos 20 using

cos20 = 2cos’0—1 = 32— /3)—1 = —=1/3,




ie. 20 = 3n (and not in which would make cos 26 positive). Hence
arg(a+ib) = 5n/12.

Alternatively, to find the modulus and argument we could exploit the

duplication formulae (1.7) (i) and (v) as follows.

z, = 1+i=r,(cosf, +isinb,);

r,cosf, = Lr;sinf, =1; r=.,/20, =
z, = 1+/3i = ry(cos 0, + sin6,);

0080, = Lry8in8, =./3; =20, =4n
z, = /3—i =ry(cosOy+isinb,); rycosfy = /3, rysinf; = —1;

ry =20, = —in
As before,
|2 23 25| = 7y ry 75 = 42
Arg(z;2z523) = 0,+0,+0; = n+in—¢n = 5n/12,

which turns out to be the principal value of the argument since it satisfies
the inequality —n < 6 < 7. a

Problem 1.6 Find the modulus and argument of (i) 1+cos6+isin 0,
(1) 1—cosBO+isinf, and deduce the corresponding values for (i)
(1—i)1+cos@+isin@)/(1+i)(1—cos@+isinf) when —2n <6 < 2m,
0 #0or +m.

Solution. (i) 14+cos@+isin® = 2cos36(cos36+isinh) which is of
the form r(cos ¢ +isin ¢), i.e. the modulus r = 2|cos%0]; it should be
remembered that r must take the positive value. Let us assume that
—2n < 0 < 2m; other values of 6 will yield corresponding results in
rand ¢.

When 6 = + 7, r = 0 and ¢, the argument is not defined.

When —n < 6 <, r = 2cos30, since the cosine is positive, and
¢ = 30 is a principal value because —in < ¢ < im.

When n < 6 < 2w, or —2n < 0 < —m, cos10 is negative so that here
r= —2cos3f, cos¢ = —cosif, singp = —sin3f, ie. ¢ = n+30 or
10—m.

Form < 6 < 2n, —3n < ¢ < 0 when ¢ = 30—m, i.e. ¢ is a principal
value and for —2n < 0 < —m,0 < ¢ < 3w when ¢ =10+m ie @ isa
principal value.

(1) We can, of course, deduce the results of this case from (i) by substitut-
ing n—0 for 6, or we have

1 —cosf+isinf = 2sin30(sin30+icos), ie. r = 2|sinif|.
When 6 = 0, 4+-2n, r = 0 and the argument  is not defined.



When 0 < 0 < 27, r = 2sinif > 0, cosy = sin6, siny = cos36,
sothaty = L(m—0) with —in < y < imis the principal valued argument.

When —271 < 6 < 0, sin30 is negative so that r = —2sin36, cosy =
—sinlf, siny = —cosif, ie ¥ = —i(n+6), —in <y < 3n, which
gives ¥ its principal value.

(i) (1—i) = /2[cos(—4m)+isin(—5m)] and (1+i) = \/2[cosGGm)+
isin(37)]. Consequently, the modulus R of the expression using (i) and (ii)
of (1.7) and the above is

R = 2,/2|cos30|/2,/2|sin 30| = |cot36|.

We now exclude the points § = +7n at which the expression is zero
and the points 6 = 0, +2n at which the denominator is zero leaving the
quotient undefined or singular; these facts were, of course, anticipated
in the original statement of the problem.

For —2n < 0 < —m and0 < 6 < m,cot3fis positivesothat R = cot36.
Butfor —n < 6 < Oand 7 < 6 < 2m,cot36 is negativeand R = —cot 30,

To determine the argument of the quotient we use (1.7) (v) and (vi),
i.e. w the argument, which will be the principal value only if — 7 < w < 7,
is given by
o = arg(l —i)—arg(l+i)+arg(l +cos +isin f)—arg(l —cos 6 +isin 0)

= —an—an+o—y.

This argument will vary with different intervals of 6. Using the results of
(i) and (iii) we have for —2n < 0 < —7n, ¢ = 30+n, ¢ = —(n+0),
ie. w = 0+n When —n <0 <0, ¢ =10,y = —3(n+0), ie. v = 0.
When 0 < 0 <m, ¢ =10, y =i(x—0), ie. o = 0—n. Finally when
n<0<2n ¢ =3%0—mn ¢y =3in—0), ie. w =0—2m. In each case
—7n < w < 0, so that w is the principal value. O

Problem 1.7 Find the modulus and the principal value of the argument
of Z where
Z = coso—isina+cosf+isinf 0 < a < in).
Solution. Adding the components of the real and imaginary parts
separately, we have
2 cos 3(0 + o)cos 3(6 — o) + 2i sin 1(0 — ar)cos 1(0 + )
= 2cos3(0+a){cos 3(0 —a)+isini(0 —a)}.
The modulus is r = |2 cos (0 +«)|. To determine the argument we discuss
separately the cases in which cos 3(0 + o) is positive or negative. We exclude
the values 6 = + n—a at whichr = 0and Z = 0.
Case (i). cos 3(0 +a) > 0 when —in < $(0+a) < in. Here
r=|Z| = 2cosi@+a), ArgZ = 3(0—a)+2kn (k integral).



Case (ii). cos1(0+a) < 0 when 37 < 3(0+a) < 3n. Here
r=|Z| = —2cos3(0+a), ArgZ = n+3(0—a)+2kn, (kintegral).

In case (i), since —in < 3(0+a) < 3 we have —in—a < i(0—a) <
1n—a. Hence when 0 < o < 37, 3(6—«) lies in the open interval (— 7, 37)
and arg Z = (0 —o).

In case (i) where in < (0 +a) < 3n,wehavein—a < 1(0—a) < 3n—0.
When 0 < a < in, 1(0—a) lies in the open interval (0, 37), and Arg Z =
n+3(0—a) with k = 0 lies in (7, 3n).

Hence, to obtain arg z, the principal value, we must choose k = —1 in
the general formula ArgZ = n+3(0—a)+2kn, ie, argZ = 3(0—a)—7
which lies in (—m,17). O

Problem 1.8 Given |z+ 16| = 4|z+1|, deduce that |z| = 4.
Solution. We have

|z+16]> = (z+16)(z+16) = zZ+16(z+2)+256
241> = 4+ 1D)E+1) = z24+z+2+]1.

But [z+16[* = 16|z +1]% ie.
2Z+16(z+2)+256 = 16(zZ+z4+2+1)

or 240 = 15zz.
Hence zz = |z|* = 240/15 = 16. Taking the square root,

z| = 4. O

Problem 1.9 Givenz™' = (a+ib)”'+(a+ic)” ',z = x+iy, a,b, c being
real, with a+ib, a+ic not zero, evaluate (i) x* + y?, (ii) (x —a)* +y. Hence
deduce Rez.

Solution.
1 2a+i(b+c) . (a+ib)a+ic)
2 (a+iba+ic)) - 2a+ibto)
so that
s _ (a+ib)a+ic) (a—ib)a—ic) (a®+b>)a*+c?)
XAV =& = ibre)  2a—ibtd — A@+icr Y
To evaluate (i1) we consider z —a, which is (x —a)+iy.
(a+ib)a+ic) a*+ib(b+c)—bc—a{2a+i(b+c)}
T 2a+ibro O 2a+i(b+c) ’
ie. (x—a)+iy = —(a®+bc)/{2a+i(b+c)).

Taking the conjugate of both sides,
(x—a)—iy = —(a*+bc)/{2a—ilb+c)},
so that multiplying, we have
(x—a+iyYx—a—iy) = (x—a)*+y? = (a®+bc)*/{4a> +(b+c)*}. (i)
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