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Preface

Real mathematics is the art of creating, understanding, and
exploring the relationships between various mathematical structures.
Mathematics is the art f making mathematics, by exploring and
understanding mathematical structures. Another insightful view put
forth which is that real or pure mathematics is not necessarily applied
mathematics: it is possible to study abstract entities with respect to
their intrinsic nature, and not be concerned with how they manifest
in the real world. Even though the pure and applied viewpoints are
distinct philosophical positions, in practice there is much overlap in
the activity of pure and applied mathematicians. To develop accurate
models for describing the real world, many applied mathematicians
draw on tools and techniques that are often considered to be “pure”
mathematics. On the other hand, many pure mathematicians draw on
natural and social phenomena as inspiration for their abstract research.

Analysis is concerned with the properties of functions. It deals
with concepts such as continuity, limits, differentiation and integration,
thus providing a rigorous foundation for the calculus of infinitesimals
introduced by Newton and Leibniz in the 17th century. Real analysis
studies functions of real numbers, while complex analysis extends the
aforementioned concepts to functions of complex numbers. Functional
analysis is a branch of analysis that studies infinite-dimensional
vector spaces and views functions as points in these spaces. In
mathematics, computer science, or management science, mathematical
optimization is the selection of a best element from some set of
available alternatives. In the simplest case, an optimization problem
consists of maximizing or minimizing a real function by systematically
choosing input values from within an allowed set and computing the
value of the function. The generalization of optimization theory and
techniques to other formulations comprises a large area of applied
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mathematics. More generally, optimization includes finding “best
available” values of some objective function given a defined domain,
including a variety of different types of objective functions and different
types of domains. One major criterion for optimizers is just the number
of required function evaluations as this often is already a large
computational effort, usually much more effort than within the
optimizer itself, which mainly has to operate over the N variables.
The derivatives provide detailed information for such optimizers, but
are even harder to calculate, e.g. approximating the gradient takes
at least N+1 function evaluations. For approximations of the 2nd
derivatives the number of function evaluations is in the order of N2.
Newton’s method requires the 2nd order derivates, so for each iteration
the number of function calls is in the order of N2, but for a simpler
pure gradient optimizer it is only N. However, gradient optimizers
need usually more iterations than Newton’s algorithm. Which one is
best with respect to the number of function calls depends on the
problem itself. To solve problems, researchers may use algorithms
that terminate in a finite number of steps, or iterative methods that
converge to a solution, or heuristics that may provide approximate
solutions to some problems.

This book is intended first and foremost for students wishing to
deepen their knowledge of mathematical analysis, and for lecturers
conducting seminars in university mathematics departments.

—FEditor
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Chapter 1

Applications of Measure Theory

Measurable Cardinal

In mathematics, a measurable cardinal is a certain kind of large
cardinal number.

Measurable

Formally, a measurable cardinal is an uncountable cardinal
number k such that there exists a k-additive, non-trivial, 0-1-valued
measure on the power set of k. (Here the term k-additive means that,
for any sequence A , a<) of cardinality A<x, A being pairwise disjoint
sets of ordinals less than k, the measure of the union of the A equals
the sum of the measures of the individual A ) Equivalently, k is
measurable means that it is the critical point of a non-trivial elementary
embedding of the universe V into a transitive class M. This equivalence
is due to Jerome Keisler and Dana Scott, and uses the ultrapower
construction from model theory. Since V is a proper class, a small
technical problem that is not usually present when considering
ultrapowers needs to be addressed, by what is now called Scott’s trick.

Equivalently, ¥ is a measurable cardinal if and only if it is an
uncountable cardinal with a k-complete, non-principal ultrafilter.
Again, this means that the intersection of any strictly less than x-
many sets in the ultrafilter, is also in the ultrafilter. Although it
follows from ZFC that every measurable cardinal is inaccessible (and
is ineffable, Ramsey, etc.), it is consistent with ZF that a measurable
cardinal can be a successor cardinal. It follows from ZF + axiom of
determinacy that o, is measurable, and that every subset of m, contains
or is disjoint from a closed and unbounded subset.

The concept of a measurable cardinal was introduced by Stanis
law Ulam (1930), who showed that the smallest cardinal k that admits
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a non-trivial countably-additive two-valued measure must in fact
admit a k-additive measure. (If there were some collection of fewer
than x measure-0 subsets whose union was k, then the induced measure
on this collection would be a counterexample to the minimality of k.)
From there, one can prove (with the Axiom of Choice) that the least
such cardinal must be inaccessible.

It is trivial to note that if k admits a non-trivial k-additive measure,
then k¥ must be regular. (By non-triviality and k-additivity, any subset
of cardinality less than k¥ must have measure 0, and then by x-
additivity again, this means that the entire set must not be a union
of fewer than x sets of cardinality less than x.) Finally, if
A <k, then it can’t be the case that x < 2*. If this were the case, then
we could identify ¥ with some collection of 0-1 sequences of length
A. For each position in the sequence, either the subset of sequences
with 1 in that position or the subset with O in that position would
have to have measure 1. The intersection of these A-many measure
1 subsets would thus also have to have measure 1, but it would contain
exactly one sequence, which would contradict the non-triviality of the
measure. Thus, assuming the Axiom of Choice, we can infer that «
is a strong limit cardinal, which completes the proof of its inaccessibility.

If « is measurable and peV_and M (the ultrapower of V) satisfies
y(x,p), then the set of a<k such that V satisfies y(a,p) is stationary
in x (actually a set of measure 1). In particular if y is a D, formula
and V satisfies y(k,p), then M satisfies it and thus V satisfies y(a,p)
for a stationary set of a<k. This property can be used to show that
k 1s a limit of most types of large cardinals which are weaker than
measurable. Notice that the ultrafilter or measure which witnesses
that x is measurable cannot be in M since the smallest such measurable
cardinal would have to have another such below it which is impossible.

Every measurable cardinal x is a 0-huge cardinal because *M,IM,
that is, every function from x to M is in M. Consequently, V__IM

k+1? .
Real-valued Measurable

A cardinal « is called real-valued measurable if there is an atomless
k-additive measure on the power set of k. They were introduced by
Stefan Banach (1930). Banach & Kuratowski (1929) showed that the
continuum hypothesis implies that ¢ is not real-valued measurable.
A real valued measurable cardinal less than or equal to ¢ exists if
there is a countably additive extension of the Lebesgue measure to
all sets of real numbers. A real valued measurable cardinal is weakly
Mahlo.
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Solovay (1971) showed that existence of measurable cardinals in
ZFC, real valued measurable cardinals in ZFC, and measurable
cardinals in ZF, are equiconsistent.

Normal Measure

In set theory, a normal measure is a measure on a measurable
cardinal x such that the equivalence class of the identity function on
Kk maps to k itself in the ultrapower construction. Equivalently, if
f:k—«k is such that f(a)<a for most a<k, then there is a B<k such that
f(a)=Pp for most a<k. (Here, “most” means that the set of elements of
k where the property holds is a member of the ultrafilter, i.e. has
measure 1.) Also equivalent, the ultrafilter (set of sets of measure 1)
is closed under diagonal intersection.

For a normal measure, any closed unbounded (club) subset of k
contains most ordinals less than k. And any subset containing most
ordinals less than « is stationary in k. If an uncountable cardinal k
has a measure on it, then it has a normal measure on it.

Mitchell Order

In mathematical set theory, the Mitchell order is a well-founded
preorder on the set of normal measures on a measurable cardinal «.
It is named for William Mitchell. We say that M >% N (this is astrict
order) if M is in the ultrapower model defined by N. Intuitively, this
means that M is a weaker measure than N (note, for example, that
k will still be measurable in the ultrapower for NV, since M is a measure
on it).

In fact, the Mitchell order can be defined on the set (or proper
class, as the case may be) of extenders for x; but if it is so defined
it may fail to be transitive, or even well-founded, provided x has
sufficiently strong large cardinal properties. Well-foundedness fails
specifically for rank-into-rank extenders; but Itay Neeman showed in
2004 that it holds for all weaker types of extender.

The Mitchell rank of a measure is the order type of its predecessors
under X>%; since >% is well-founded this is always an ordinal.

A cardinal which has measures of Mitchell rank o for each a <
B is said to be B-measurable.
Valuation (Measure Theory)

In measure theory or at least in the approach to it through
domain theory, a valuation is a map from the class of open sets of
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a topological space to the set positive real numbers including infinity.
It is a concept closely related to that of a measure and as such it finds
applications measure theory, probability theory and also in theoretical
computer science.

Domain/Measure Theory Definition
Let (X,t) be a topological space: a valuation is any map
v:7 -5 R U {+o0}
satisfying the following three properties

v(d)=0 Strictness property
v(U) <v(V) ifUcV U,Ve7 Monotonicity property
viUUV)+v(UNV)=v(U)+vw(V) VU, VeT Modularity property

The definition immediately shows the relationship between a
valuation and a measure: the properties of the two mathematical
object are often very similar if not identical, the only difference being
that the domain of a measure is the Borel algebra of the given
topological space, while the domain of a valuation is the class of open
sets. Further details and references can be found in Alvarez-Manilla
et al. 2000 and Goulbault-Larrecq 2002.

Continuous Valuation
A valuation (as defined in domain theory/measure theory) is said

to be continuous if for every directed family {U.}, ., of open sets (i.e. an

indexed family of open sets which is also directed in the sense that for
each pair of indexes ¢ and j belonging to the index set I, there exists

anindex k such that U, c U, and U, c U, ) the following equality holds:

V[U Uij =sup v(U,).

iel iel
Simple Valuation

A valuation (as defined in domain theory/measure theory) is said
to be simple if it is a finite linear combination with non-negative
coefficients of Dirac valuations, 1.e.

v(U)=Y a8, (U) YUeT
i=1

where a, is always greater than or at least equal to zero for all index
i. Simple valuations are obviously continuous in the above sense. The
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supremum of a directed family of simple valuations (i.e. an indexed
family of simple valuations which is also directed in the sense that
for each pair of indexes i and j belonging to the index set I, there exists

an index k such that v,(U)<v, (U) and v;(U) cv,(U) ) is called quasi-
simple valuation
v(U)=supv,(U) VUeT.

i€l

Examples
Dirac Valuation

Let (X,7) be a topological space, and let x be a point of X: the
map

8,(U)={0 Wzl ger

1 ifxeU

is a valuation in the domain theory/measure theory, sense called Dirac
valuation. This concept bears its origin from distribution theory as
it is an obvious transposition to valuation theory of Dirac distribution:
as seen above, Dirac valuations are the “bricks” simple valuations are

made of.

Filtration (Mathematics)

In mathematics, a filtration is an indexed set S, of subobjects of
a given algebraic structure S, with the index i running over some
index set I that is a totally ordered set, subject to the condition that
if i <jin I then S, I Sj. The concept dual to a filtration is called a
cofiltration.

Sometimes, as in a filtered algebra, there is instead the
requirement that the S; besubobjects with respect to certain operations
(say, vector addition), but with respect to other operations (say,

multiplication), they instead satisfy S;-S; =S, ;, where here the index
set is the natural numbers; this is by analogy with a graded algebra.

Sometimes, filtrations are supposed to satisfy the additional
requirement that the union of the S, be the whole S, or (in more
general cases, when the notion of union does not make sense) that
the canonical homomorphism from the direct limit of the S, to S is
an isomorphism. Whether this requirement is assumed or not usually
depends on the author of the text and is often explicitly stated. We
are not going to impose this requirement in this article.
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There is also the notion of a descending filtration, which is required

to satisfy S, ©S; in lieu of S; =8S; (and, occasionally, n}Si =0 instead

of iLJSi - S). Again, it depends on the context how exactly the word

“filtration” is to be understood. Descending filtrations are not to be
confused with cofiltrations (which consist of quotient objects rather
than subobjects).

Filtrations are widely used in abstract algebra, homological algebra
(where they are related in an important way to spectral sequences),
and in measure theory and probability theory for nested sequences
of c-algebras.

In functional analysis and numerical analysis, other terminology
is usually used, such as scale of spaces or nested spaces.

Examples
Algebra:

Groups: In algebra, filtrations are ordinarily indexed by N, the
set of natural numbers. A filtration of a group G, is then a nested
sequence G, of normal subgroups of G (that is, for any n we have G,
I G)). Note that this use of the word “filtration” corresponds to our
“descending filtration”.

Given a group G and a filtration G , there is a natural way to
define a topology on G, said to be associated to the filtration.

A basis for this topology is the set of all translates of subgroups
appearing in the filtration, that is, a subset of G is defined to be open
if it is a union of sets of the form aG , where a”’G and n is a natural
number.

The topology associated to a filtration on a group G makes G into
a topological group.

The topology associated to a filtration G, on a group G is Hausdorff
if and only if NG, = {1}.

If two filtrations G, and G2  are defined on a group G, then the
identity map from G to G, where the first copy of G is given the G -
topology and the second the G2  -topology, is continuous if and only
if for any n there is an m such that G, 1G2 , that is, if and only if
the identity map is continuous at 1.

In particular, the two filtrations define the same topology if and
only if for any subgroup appearing in one there is a smaller or equal
one appearing in the other.
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Rings and Modules: Descending Filtrations

Given a ring R and an R-module M, a descending filtration of M
is a decreasing sequence of submodules M . This is therefore a special
case of the notion for groups, with the additional condition that the
subgroups be submodules. The associated topology is defined as for
groups.

An important special case is known as the I-adic topology (or J-
adic, etc.). Let R be a commutative ring, and I an ideal of R.

Given an R-module M, the sequence I" M of submodules of M
forms a filtration of M. The I-adic topologyo n M is then the topology
associated to this filtration. If M is just the ring R itself, we have
defined the I-adic topology on R.

When R is given the I-adic topology, R becomes a topological ring.
If an R-module M is then given the I-adic topology, it becomes a
topological R-module, relative to the topology given on R.

Rings and modules: ascending filtrations

Given a ring R and an R-module M, an ascending filtration of M
is an increasing sequence of submodules M . In particular, if R is a
field, then an ascending filtration of the R-vector space M is an
increasing sequence of vector subspaces of M. Flags are one important
class of such filtrations.

Sets

A maximal filtration of a set is equivalent to an ordering (a
permutation) of the set. For instance, the filtration {0} c {0,1} c {0,1,2}
corresponds to the ordering (0,1,2). From the point of view of the field
with one element, an ordering on a set corresponds to a maximal flag
(a filtration on a vector space), considering a set to be a vector space
over the field with one element.
Measure Theory

In measure theory, in particular in martingale theory and the
theory of stochastic processes, a filtration is an increasing sequence
of o~algebras on a measurable space. That is, given a measurable

space (Q,F), a filtration is a sequence of c-algebras {F} ., with
F. < F for each ¢ and

t<t,=>F cF .
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The exact range of the “times” ¢ will usually depend on context:
the set of values for ¢ might be discrete or continuous, bounded or
unbounded. For example,

te{0,L,...,N},N,,[0,T] or [0, +0).

Similarly, a filtered probability space (also known as a stochastic
basis) is a probability space with a filtration of its c-algebra.

It is also useful (in the case of an unbounded index set) to define
F._ as the o-algebra generated by the infinite union of the Z’s, which

is contained in F:

F, =G[Uf;jg F,

t=0

A oc-algebra defines the set of events that can be measured, which
in a probability context is equivalent to events that can be
discriminated, or “questions that can be answered at time ¢’. Therefore
a filtration is often used to represent the change in the set of events
that can be measured, through gain or loss of information. A typical
example is in mathematical finance, where a filtration represents the
information available up to and including each time ¢, and is more
and more precise (the set of measurable events is staying the same
or increasing) as more information from the evolution of the stock
price becomes available.

Lebesgue Integration

In mathematics, Lebesgue integration, named after French
mathematician Henri Lebesgue (1875-1941), refers to both the general
theory of integration of a function with respect to a general measure,
and to the specific case of integration of a function defined on a subset
of the real line or a higher dimensional Euclidean space with respect
to the Lebesgue measure. This article focuses on the more general
concept.

Lebesgue integration plays an important role in real analysis, the
axiomatic theory of probability, and many other fields in the
mathematical sciences.

The integral of a non-negative function can be regarded in the
simplest case as the area between the graph of that function and the
x-axis. The Lebesgue integral is a construction that extends the integral
to a larger class of functions defined over spaces more general than
the real line.



