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PREFACE

This is a basic textbook for linear algebra, combining the theory with the applications. The
central equations are the linear system Ax = b and the eigenvalue problem Ax = Ax.
It is simply amazing how much there is to say (and learn) about those two equations.
This book comes from years of teaching and organizing and thinking about the linear
algebra course—and still this subject feels new and very alive.

I am really happy that the need for linear algebra is widely recognized. It is
absolutely as important as calculus. I don’t concede anything, when I look at how
mathematics is actually used. So many applications today are discrete rather than
continuous, digital rather than analog, linearizable rather than erratic and chaotic. Then
vectors and matrices are the language to know.

The equation Ax = b uses that language right away. The left side has a matrix A
times an unknown vector x. Their product Ax is a combination of the columns of A.
This is the best way to multiply, and the equation is asking for the combination that
produces b. Our solution can come at three levels and they are all important :

1.  Direct solution by forward elimination and back substitution.
2.  Matrix solution by x = A~'b using the inverse matrix A~

3.  Vector space solution by finding all combinations of the columns of A and all
solutions to Ax = 0. We are looking at the column space and the nullspace.

And there is another possibility: Ax = b may have no solution. The direct approach
by elimination may lead to 0 = 1. The matrix approach may fail to find A~!. The
vector space approach can look at all combinations of the columns, but & might not
lie in that column space. Part of the mathematics is understanding when an equation
is solvable and when it’s not.

Another part is learning to visualize vectors. A vector v with two components is not
hard. The components v; and v; tell how far to go across and up—we can draw an
arrow. A second vector w may be perpendicular to v (and Chapter 1 tells exactly when).
If those vectors have six components, we can’t draw them but our imagination keeps
trying. We can think of a right angle in six-dimensional space. We can see 2v (twice as far)
and —w (in the opposite direction to w). We can almost see a combination like 2v — w.

Most important is the effort to imagine all the combinations of cv with dw. They fill
some kind of “two-dimensional plane” inside the six-dimensional space. As I write these
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vi Preface

words, I am not at all sure that I see this subspace. But linear algebra offers a simple way
to work with vectors and matrices of any size. If we have six currents in a network or
six forces on a structure or six prices for our products, we are certainly in six dimensions.
In linear algebra, a six-dimensional space is pretty small.

Already in this preface, you can see the style of the book and its goal. The style is in-
formal but the goal is absolutely serious. Linear algebra is great mathematics, and I try
to explain it as clearly as I can. I certainly hope that the professor in this course learns
new things. The author always does. The student will notice that the applications reinforce
the ideas. That is the whole point for all of us—to learn how to think. I hope you will see
how this book moves forward, gradually but steadily.

Mathematics is continually asking you to look beyond the most specific case, to see
the broader pattern. Whether we have pixel intensities on a TV screen or forces on an
airplane or flight schedules for the pilots, those are all vectors and they all get multiplied
by matrices. Linear algebra is worth doing well.

Structure of the Textbook
I want to note five points about the organization of the book:

1.  Chapter | provides a brief introduction to the basic ideas of vectors and matrices
and dot products. If the class has met them before, there is no problem to begin
with Chapter 2. That chapter solves n by n systems Ax = b.

2.  For rectangular matrices, [ now use the reduced row echelon form more than be-
fore. In MATLAB this is R = rref (A). Reducing A to R produces bases for
the row space and column space. Better than that, reducing the combined matrix
[A I ] produces total information about all four of the fundamental subspaces.

3. Those four subspaces are an excellent way to learn about linear independence and
dimension and bases. The examples are so natural, and they are genuinely the
key to applications. I hate just making up vector spaces when so many impor-
tant ones are needed. If the class sees plenty of examples of independence and
dependence, then the definition is virtually understood in advance. The columns
of A are independent when x = 0 is the only solution to Ax = 0.

4. Section 6.1 introduces eigenvalues for 2 by 2 matrices. Many courses want to
meet eigenvalues early (to apply them.in another subject or to avoid missing them
completely). It is absolutely possible to go directly from Chapter 3 to Section 6.1.
The determinant is easy for a 2 by 2 matrix, and eigenvalues come through clearly.

5.  Every section in Chapters 1 to 7 ends with a highlighted Review of the Key Ideas.
The reader can recapture the main points by going carefully through this review.
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A one-semester course that moves steadily can reach eigenvalues. The key idea is to
diagonalize a matrix. For most square matrices that is S~ AS, using the eigenvector
matrix S. For symmetric matrices it is Q7 AQ. When A is rectangular we need UT AV.
I do my best to explain that Singular Value Decomposition because it has become
extremely useful. I feel very good about this course and the student response to it.

Structure of the Course

Chapters 1-6 are the heart of a basic course in linear algebra—theory plus applications.
The beauty of this subject is in the way those two parts come together. The theory is
needed, and the applications are everywhere.

I now use the web page to post the syllabus and homeworks and exam solutions:

http://web.mit.edu/18.06/www

I hope you will find that page helpful. It is coming close to 30,000 visitors. Please
use it freely and suggest how it can be extended and improved.

Chapter 7 connects linear transformations with matrices. The matrix depends on the
choice of basis! We show how vectors and matrices change when the basis changes.
And we show the linear transformation behind the matrix. I don’t start the course with
that deeper idea, it is better to understand subspaces first.

Chapter 8 gives important applications—often I choose Markov matrices for a lecture
without an exam. Chapter 9 comes back to numerical linear algebra, to explain how
Ax = b and Ax = Ax are actually solved. Chapter 10 moves from real to complex
numbers, as entries in the vectors and matrices. The complete book is appropriate for
a two-semester course—it starts gradually and keeps going forward.

Computing in Linear Algebra

The text gives first place to MATLAB, a beautiful system that was developed specifi-
cally for linear algebra. This is the primary language of our Teaching Codes, written
by Cleve Moler for the first edition and extended by Steven Lee for this edition. The
Teaching Codes are on the web page, with MATLAB homeworks and references and
a short primer. The best way to get started is to solve problems!

We also provide a similar library of Teaching Codes for Maple and Mathematica.
The codes are listed at the end of the book, and they execute the same steps that we
teach. Then the reader can see matrix theory both ways—the algebra and the algorithms.
Those work together perfectly. This textbook supports a course that includes computing
and also a course that doesn't.

There is so much good mathematics to learn and to do.
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INTRODUCTION TO VECTORS

The heart of linear algebra is in two operations—both with vectors. We add vectors
to get v + w. We multiply by numbers ¢ and 4 to get cv and dw. Combining those
operations gives the linear combination cv + dw.

Chapter | explains these central ideas, on which everything builds. We start with
two-dimensional vectors and three-dimensional vectors, which are reasonable to draw.
Then we move into higher dimensions. The really impressive feature of linear algebra
is how smoothly it takes that step into n-dimensional space. Your mental picture stays
completely correct, even if drawing a ten-dimensional vector is impossible.

This is where the book is going (into n-dimensional space), and the first steps
are the two operations in Sections 1.1 and 1.2:

1.1  Vector addition v + w and linear combinations cv + dw.

1.2 The dot product v - w and the length |v| = /v - v.

VECTORS AND LINEAR COMBINATIONS = 1.1

“You can’t add apples and oranges.” That sentence might not be news, but it still con-
tains some truth. In a strange way, it is the reason for vectors! If we keep the number
of apples separate from the number of oranges, we have a pair of numbers. That pair
is a two-dimensional vector v:

v =| V1 v; = number of apples
v v» = number of oranges.

We wrote v as a column vector. The numbers v; and v are its “components.” The
main point so far is to have a single letter v (in boldface) for this pair of numbers v;
and vy (in lightface).

Even if we don’t add v; to vy, we do add vecrors. The first components of v

and w stay separate from the second components:

L
v=|:vl] and w=[wl] add to 1.:+w=l:uI i u"].
2 w3 V2 + wWe

1



2 Chapter 1 Introduction to Vectors

You see the reason. The total number of apples is v; +w;. The number of oranges is
vy + wy. Vector addition is basic and important. Subtraction of vectors follows the
same idea: The components of v —w are vy —wi and _____

Vectors can be multiplied by 2 or by —1 or by any number ¢. There are two
ways to double a vector. One way is to add v + v. The other way (the usual way) is
to multiply each component by 2:

20 = [2v1] and -V = [—Ul:l ;
2vy —v2

The components of cv are cvy; and cvy. The number c is called a “scalar.”

Notice that the sum of —v and v is the zero vector. This is 0, which is not
the same as the number zero! The vector 0 has components 0 and 0. Forgive me for
hammering away at the difference between a vector and its components. Linear algebra
is built on these operations v+ w and cv—adding vectors and multiplying by scalars.

There is another way to see a vector, that shows all its components at once. The
vector v can be represented by an arrow. When v has two components, the arrow is
in two-dimensional space (a plane). If the components are vy and vy, the arrow goes
v] units to the right and vy units up. This vector is drawn twice in Figure 1.1. First,
it starts at the origin (where the axes meet). This is the usual picture. Unless there
is a special reason, our vectors will begin at (0,0). But the second arrow shows the
starting point shifted over to A. The arrows OP and AB represent the same vector.
One reason for allowing any starting point is to visualize the sum v + w:

Vector addition (head to tail) At the end of v, place the start of w.

We travel along v and then along w. Or we take the shortcut along v+ w. We could
also go along w and then v. In other words, w + v gives the same answer as v + w.
These are different ways along the parallelogram (in this example it is a rectangle).
The endpoint in Figure 1.2 is the diagonal v + w which is also w + v.

Vs
- v,
¥ P A
v
i Tl
[ /B iv—[l]
: % i et prmee ¥y
0 -~
—> 4 = /,
% v=0P=AB=[2} i P 1

Figure 1.1  The arrow usually starts at the origin (0, 0); cv is always parallel to v.
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Figure 1.2  Vector addition v+ w produces the diagonal of a parallelogram. Add the
first components and second components separately.

Check that by algebra: The first component is v; + w; which equals wy + v;.
The order of addition makes no difference:

con o[- B[+

The zero vector has vy = 0 and v = 0. It is too short to draw a decent arrow, but
you know that v + 0 = v. For 2v we double the length of the arrow. We reverse its
direction for —v. This reversing gives a geometric way to subtract vectors.

Vector subtraction To draw v — w, go forward along v and then backward
along w (Figure 1.3). The components are v} — w; and vy — wos.

We will soon meet a “dot product” of vectors. It is not the vector whose components

are viw; and vows.

Linear Combinations
We have added vectors, subtracted vectors, and multiplied by scalars. The answers
v+ w, v — w, and cv are computed a component at a time. By combining these

operations, we now form “linear combinations” of v and w. Apples still stay separate
from oranges—the linear combination in Figure 1.3 is a new vector cv + dw.

DEFINITION The sum of cv and dw is a linear combination of v and w.

e[ fl]-[4]



4 Chapter 1 Introduction to Vectors

Figure 1.3  Vector subtraction v — w (left). The linear combination 3v + 2w (right).

This is the fundamental construction of linear algebra: multiply and add. The
sum v+ w is a special combination, when ¢ = d = 1. The multiple 2v is the particular
case with ¢ =2 and d = 0. Soon you will be looking at all linear combinations of v
and w—a whole family of vectors at once. It is this big view, going from two vectors
to a “plane of vectors,” that makes the subject work.

In the forward direction, a combination of v and w is supremely easy. We are
given the multipliers ¢ = 3 and d = 2, so we multiply. Then add 3v+2w. The serious
problem is the opposite question, when ¢ and 4 are “unknowns.” In that case we are
only given the answer: c¢v + dw has components 8 and —1. We look for the right
multipliers ¢ and d. The two components give two equations in these two unknowns.

When 100 unknowns multiply 100 vectors each with 100 components, the best
way to find those unknowns is explained in Chapter 2.

Vectors in Three Dimensions

Each vector v with two components corresponds to a point in the xy plane. The com-
ponents of v are the coordinates of the point: x = v; and y = v;. The arrow ends
at this point (v, v2), when it starts from (0,0). Now we allow vectors to have three
components. The xy plane is replaced by three-dimensional space.

Here are typical vectors (still column vectors but with three components):

1 2 &
v=|2| and w=| 3| and v+w=|5
2 -1 1

The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the origin,
where the xyz axes meet and the coordinates are (0, 0, 0). The arrow ends at the point
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Y z
1 1,-2,2) 1
[3] (3,2) | 3
B | 2
4 1
21
|
— t t + x : y
| =2 1

Figure 1.4  Vectors [ ] and [2] correspond to points (x,y) and (x, y, z).

with coordinates x = 1, y = 2, z = 2. There is a perfect match between the column
vector and the arrow from the origin and the point where the arrow ends. Those are
three ways to describe the same vector:

1
From now on v= |2 is also written as v = (1,2,2).
2

The reason for the column form (in brackets) is to fit next to a matrix. The reason
for the row form (in parentheses) is to save space. This becomes essential for long
vectors. To print (1,2,2,4,4,6) in a column would waste the environment.
Important note v = (1,2,2) is not a row vector. The row vector [1 2 2] is abso-
lutely different, even though it has the same three components. It is the “transpose”
of v.

A column vector can be printed horizontally (with commas and parentheses).
Thus (1,2,2) is in actuality a column vector. It is just temporarily lying down.

In three dimensions, vector addition is still done a component at a time. The
result v+ w has components vy +w; and vy +w> and v3+w3—maybe apples, oranges,
and pears. You see already how to add vectors in 4 or 5 or n dimensions. This is now
the end of linear algebra for groceries!

The addition v + w is represented by arrows in space. When w starts at the
end of v, the third side is v + w. When w follows v, we get the other sides of a
parallelogram. Question: Do the four sides all lie in the same plane? Yes. And the
sum v +w — v — w goes around the parallelogram to produce

A typical linear combination of three vectors in three dimensions is u +4v —2w:

1 1 2 1
Linear combination 0|+4|12|-=2| 3|=1]2
3 1 -1 9

We end with this question: What surface in 3-dimensional space do you get from all
the linear combinations of u and »? The surface includes the line through # and the
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line through v. It includes the zero vector (which is the combination Ou 4 Ov). The
surface also includes the diagonal line through z + v—and every other combination
cu +dv (not using w). This whole surface is a plane (unless u is parallel to v).

Note on Computing Suppose the components of v are v(1), ..., v(N) and similarly for w.
In a language like FORTRAN, the sum v + w requires a loop to add components sep-
arately:

~ DO101=1N
10 VPLUSW() = v(1) +w(l)

MATLAB works directly with vectors and matrices. When v and w have been
defined, v+ w is immediately understood. It is printed unless the line ends in a semi-
colon. Input two specific vectors as rows—the prime ’ at the end changes them to
columns. Then print v + w and another linear combination:

v=[2 3 4 ; w=[1 117 ; u=v+w
2xv—3%xw
The sum will print with # =. The unnamed combination prints with ans =:

U= ans =

5w
W

= REVIEW OF THE KEY IDEAS =

1. A vector v in two-dimensional space has two components v; and v,.
2.  Vectors are added and subtracted a component at a time.
3.  The scalar product is cv = (cvy, cvz). A linear combination of v and w is cv + dw.

4. The linear combinations of two non-parallel vectors v and w fill a plane.

Problem Set 1.1

Problems 1-9 are about addition of vectors and linear combinations.

1 Draw the vectors v = [?] and w = [‘%] and v + w and v — w in a single
xy plane.

2 Ifv+w=[}]and v—w=[}], compute and draw v and w.
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From v = ["l’] and w = [%], find the components of 3v + w and v — 3w and
cv +dw.

Compute # + v and # + v+ w and 2u + 2v + w when

1 -3 2
u=121|, v»= 1, w=|-3
2 -2 -1

Every combination of v = (1, —2,1) and w = (0, 1, —1) has components that
add to . Find ¢ and d so that cv +dw = (4,2, —6).

In the xy plane mark all nine of these linear combinations:

c[?]-}-d[?] with ¢=0,1,2 .and d=0,1,2.

(a) The subtraction v — w goes forward along v and backward on w. Figure
1.3 also shows a second route to v — w. What is it?

(b) If you look at all combinations of v and w, what “surface of vectors” do
you see?

The parallelogram in Figure 1.2 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum.

If three corners of a parallelogram are (1, 1), (4,2), and (1, 3), what are all the
possible fourth corners? Draw two of them.

Problems 10-13 involve the length of vectors. Compute (length of v)* as v} + v3.

10

11

12

13

The parallelogram with sides v = (4, 2) and w = (-1, 2) is a rectangle (Figure 1.2).
Check the Pythagoras formula a? + b* = ¢* which is for right triangles only:

(length of v)? + (length of w)’ = (length of v + w)>.

In this 90° case, a® + b* = ¢ also works for v — w. In Figure 1.2, check that
(length of v)2 + (length of w)’ = (length of v — w)?.
Give an example of v and w (not at right angles) for which this formula fails.

To emphasize that right triangles are special, construct v and w without a 90°
angle. Compare (length of v)? + (length of w)? with (length of v + w)?.

In Figure 1.2 check that (length of v) + (length of w) is larger than (length of v + w).
This “triangle inequality” is true for every triangle, except the absolutely thin
triangle when v and w are . Notice that these lengths are not squared.
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0,1,0) = =

Problems 14-18 are about special vectors on cubes and clocks.

14 Copy the cube and draw the vector sum of { = (1,0,0) and j = (0, 1,0) and
k = (0,0, 1). The addition i + j yields the diagonal of ;

15 Three edges of the unit cube are i, j, k. Three comers are (0,0,0), (1,0, 0),
(0, 1, 0). What are the other five corners and the coordinates of the center point?
The center points of the six faces are

16 How many comners does a cube have in 4 dimensions? How many faces? How
many edges? A typical corner is (0,0, I, 0).

17 (a) What is the sum V of the twelve vectors that go from the center of a clock
to the hours 1:00, 2:00, ..., 12:00?
(b) If the vector to 4:00 is removed, find the sum of the eleven remaining vectors.

(c) Suppose the 1:00 vector is cut in half. Add it to the other eleven vectors.

18 Suppose the twelve vectors start from (0, —1) at the bottom of the clock instead
of (0,0) at the center. The vector to 6:00 is zero and the vector to 12:00 is
doubled to (2j). Add the new twelve vectors.

Problems 19-22 go further with linear combinations of v and w (see Figure).

b L %w. Mark the points %v-i— %w and %v+ %w and

)=

19 The figure shows uz =
v+ w.

20 Mark the point —v + 2w and one other combination cv + dw with ¢ +d = 1.
Draw the line of all combinations that have ¢ +d = 1.

21 Locate %v + %w and %v - %w. The combinations cv + cw fill out what line?
Restricted by ¢ > 0 those combinations with ¢ = d fill what ray?

22 (a) Mark %v+w and v + %w. Restricted by 0 <c <1 and 0 <d < 1, shade
in all combinations cv + dw.



