


C*-ALGEBRA EXTENSIONS
AND K-HOMOLOGY

BY

RONALD G. DOUGLAS

PRINCETON UNIVERSITY PRESS
AND
UNIVERSITY OF TOKYO PRESS

PRINCETON, NEW JERSEY
1980 -



Copyright ® 1980 by Princeton University Press
ALL RIGHTS RESERVED

Published in Japan exclusively by
University of Tokyo Press

In other parts of the world by
Princeton University Press

Printed in the United"States of America
by Princeton University Mress, Princeton, New Jersey

Library of Congress Cataloging in Publication data will
be found on the last printed page of this book



PREFACE

In this book I have written up the Hermann Weyl Lectures, which I
gave at the Institute for Advanced Study during February, 1978. My con-
tribution to the work on which I reported was done in collaboration with
L. G. Brown of Purdue University and P. A. Fillmore of Dalhousie Uni-
versity. The basic references are [20], [21], [22]. I will not repeat all the
references given there although I will give the more important ones and
recent papers will be cited in more detail. As we indicated in [20] and
[22], there are a number of people to whom we are indebted. I cannot men-
tion them all but would like to acknowledge the influence of M. F. Atiyah
and I. M. Singer. In addition, I would like to thank Jerry Kaminker and
Claude Schochet for discussions on this material, especially in connection
with Chapters five and six. Finally, I would like to express my apprecia-
tion to my audience for their interest which spurred me to make this exposi-

tion more comprehensive than I had originally planned.

R. G. DOUGLAS
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CHAPTER 1
AN OVERVIEW

Although there are no doubt many possible connections between
operator theory and algebraic topology, in this book I concentrate on one
interplay between the two subjects. The machinery which establishes
this connection solves various problems in operator theory which will
presently be described and suggests many others. Moreover, exciting
applications in algebraic topology seem within reach. We shall say some-
thing about these a little later. In this chapter we want to give an over-
view of our topic including the origins and a general outline of the theory.

Quite appropriately this work can be traced back to a theorem of
Hermann Weyl concerning the behavior of the spectrum of a formally self-
adjoint differential operator under a change of boundary conditions. A
converse due to von Neumann and the evolution of the abstract theories of
Fredholm operators and of operator algebras were necessary steps for its
development. More recently, the connection between Fredholm operators,
index theory, and K-theory developed by Atiyah, Singer, Janich and others
set the stage. Finally, the general interest of operator theorists in prob-
lems involving compact perturbations provided the particular impetus to
this wotk. These things will be discussed in more detail after the abstract
notion which lies at the center of this work is introduced.

We shall study a certain class of C*-extensions
0 - K(@) R cXx) -0

of the C*-algebra K(§) of the compact operators by the C*-algebra
C(X) of continuous complex-valued functions on a compact metrizable

space X. Recall that an algebra & over C is said to be a C*-algebra

3



4 C*-ALGEBRA EXTENSIONS AND K-HOMOLOGY

if & possesses anom | -| relative to which & is a Banach algebra
and an involution a - a* satisfying [ a*al|l = [|a*|| |a]| for a in &. If
9 is a complex Hilbert space and £(§) denotes the algebra of bounded
linear operators on § then 53(.5) is a C*-algebra with the operator norm
and adjoint as involution. More generally, closed, self-adjoint subalge-
bras of £($) are C*-algebras and a theorem of Gelfand and Naimark
asserts that all C*-algebras up to *-isometrical isomorphism are obtained
in this manner. In particular, the algebra K(§) of compact operators on
§ is probably the most elementary infinite dimensional C*-algebra. (Re-
call that T in £(§) is compact if the image of the unit ball under T is
compact or, equivalently for operators on a Hilbert space, if T is the
nom limit of finite rank operators.) Another simple class of C*-algebras
consists of those which are commutative and another theorem of Gelfand
and Naimark states that these are all *-isometrically isomorphic to C(X)
for some compact Hausdorff space X. Thus in considering the class of
extensions described above we are following a well-established algebraic
dictum; that is, study algebras which are obtained as extensions of sim-
pler classes of algebras. However, this was not our original motivation,
To explain that let us consider some examples of naturally occurring
extensions.

Let T denote the unit circle in C, L2?(T) the Lebesgue space rela-
tive to normalized Lebesgue measure, and H2(T) the Hardy space ob-
tained as the closure of the analytic polynomials in L2(T) or equivalently,
the closed linear span of {z": n>0}. If P denotes the orthogonal pro-
jection from L2(T) onto H2(T) , then for ¢ in C(T) the Toeplitz
operator T, on H2(T) is defined by Tyf= PWDH for f in H2(T). If
J denotes the C*-subalgebra of £(H2(T)) generated by {T(,// 1y e C(D)}
then Coburn showed in [28] that

g = {T¢+K: Y e C(T), K e KHZ(T))}

and observed that J is an extension of K by C(T). That is, there is

a shott exact sequence
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0 — Ka2m) - % ey — o,

whete i is inclusion and ¢ is the symbol map defined by ¢(T¢+K) =y.
It can be shown (cf. [32]) that the basic index results for Toeplitz opera-
tors with continuous symbol follow directly from this. Coburn further

pointed out that if d is defined by
S = {My, +K: e C(T), Ke K(LA(TYHY,

where Ml[r is the operator defined to be multiplication by i on L),
then an extension of X by C(T) is obtained which is not equivalent to
the Toeplitz extension. Thus he raised the problem of determining all ex-
tensions of K by C(T). About the same time Atiyah and Singer arrived
at the same problem for reasons which we will explain presently. Before
proceeding we enlarge the class of Toeplitz examples.

If Q is a strongly pseudo-convex domain in C", L2(0Q) is the
Lebesgue space relative to surface measure on 9}, and H2(0Q) the
Hardy space obtained as the closure in L2(@Q) of the functions holomor-
phic on a neighborhood of the closure of {1, then the analogue of Toeplitz
operators can be defined on H2(0Q) (cf. [97], [13]) as the compression
Tl/, of a continuous multiplier ¢ to Hz(aﬂ). (It is not necessary in
what follows to know the definition of strongly pseudo-convex but the ball

is strongly pseudo-convex while the bidisk is not.) Moreover the sequence

i é
0 — K@2E0) —— Tq —% c@@) — 0

can be shown to be exact, where 3'9 is the C*-subalgebra of Q(HZ(GQ))
generated by the Toeplitz operators with continuous symbol, i is inclu-
sion, and ¢ is the symbol map defined by ¢Q(T¢+K) =t¢. Thus
thete is a naturally occurring class of Toeplitz extensions. (Before con-
tinuing we point out that a similar construction can be carried out using

the Lebesgue space relative to volume measure on 1. The symbol space
is still C(o), however.)
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In a different direction let M be a closed differentiable manifold and
let L2(M) denote the Lebesgue space defined relative to a fixed smooth
measure on M. Now a zero’th order pseudo-differential operator with
scalar coefficients defines a bounded operator on L2(M) and we let ?M
denote the C*-subalgebra of £(L?(M)) generated by all such operators
together with K@2m). (1 believe adding K(L2(M)) as generators is un-
necessary if M is connected.) Then we obtain the extension

i @
0 —» KL2m) - F — C(s*™) — 0

where i is inclusion, S*(M) is the cosphere bundle on M, and Py 1S
the symbol map. Moreover, this extension is intimately related to the
Atiyah-Singer index theorem and other results, and it was in this connec-
tion that Atiyah and Singer were interested in classifying the extensions
of K by c(T).

One of our main sources of motivation sprang from operator theory. Let
T be an essentially normal operator on §, that is, an operator T in
£($) such that the self-commutator [T, T*] = TT*- T*T is compact.
The problem in operator theory was basically to classify the essentially
normal operators up to unitary equivalence modulo X and to determine
the possibilities. Why should one think that such a thing might be possi-
ble? To answer that we have to look at the theorem of Weyl to which we
alluded earlier. For H a self-adjoint operator, Weyl defined the essen-
tial spectrum o (H) to be all A in the spectrum o(H) except for iso-
lated eigenvalues of finite multiplicity. He proved in [101] that if the
self-adjoint operators H, and H, differ by a compact operator, then
ae(Hl) = Ue(Hz)' Trivially this implies that if H, and H, are self-

adjoint operators for which there exists a unitary operator U such that

*:
U H1U = H2 + K
for some K in K($), then o (H,)= 0 (H,). About twenty years later

von Neumann established [62] the converse, and almost fifty years later
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in response to a question of Halmos [41] the result was extended to

normal operators by Berg [12]. Thus we have

THEOREM 1. If N, and N, are normal operators on §, then the fol-

lowing are equivalent: a) there exists a unitary operator U and a com-

pact operator K such that U*NlU = N2+K and b) ae(Nl) = ae(Nz).
Moreover, if X is any compact subset of C, then there exists a

normal operator N such that oo(N) = X.

This solved completely the problem of classifying normal operators up
to unitary equivalence modulo X and showed that the equivalence classes
are in one to one correspondence with compact subsets of C. (This
should be compared with the solution to the unitary equivalence problem
for normal operators which involves multiplicity theory and hence equiva-
lence classes correspond to cardinal numbers assigned to a Borel partition
of the spectrum.) Therefore it seemed reasonable to try to extend this re-
sult to essentially nomal operators.

Now for an essentially normal operator T = N+ K in the algebraic
linear span JU+ K, where N is the collection of normal operators, the
only problem is to obtain 0(N) in terms of T. That is easy once it is
observed that the essential spectrum of a normal operator coincides with
the spectrum in the quotient algebra f(@)/K(.ﬁ). More precisely, since
K($) is a closed two-sided ideal in £(9) we can define the quotient
%) = £(9)/X(H), usually called the Calkin algebra, which can be
shown to be a C*-algebra. If r: £ - 9(&) denotes the quotient map,
then we can consider the spectrum 05’2(.5)(”(T)) for T in £() and this
spectrum can be shown to coincide with ae(T) for T normal. Thus the
essential spectrum for general T is defined to be o (T) = 09(5)(W(T)).
Therefore the Weyl-von Neumann-Berg theorem extends to essentially nor-
mal operators T of the form T = N+K since 0o(N) = oo(T).

Now not all essentially normal operators have this form. The operator

Tz on H2(T) provides such an example but the proof involves the notion
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of index. Recall that the class of Fredholm operators Fred(£) can be
defined (cf. [32]) such that T isin Fred($) if and only if #(T) is in-
vertible in 2() if and only 0 is not in 0o(T), or equivalently

Fred(§) = = L Q&™) ,

where & ! denotes the invertible elements in the algebra &. Then it
follows that

1) TeFred($), KeK($) implies T + KeFred(§),

2) S, TeFred(9) implies ST ¢ Fred(§), and

3) Fred($) is an open subset of £($).

The latter property follows from the fact that the invertible elements in a
Banach algebra form an open set. Moreover, a result of Atkinson shows

that T is in Fred(9) if and only if i) ran T is closed, ii) dim ker T<eo,
and iii) dim ker T* < = . Lastly, the index is defined from Fred(9) to

Z by . . . *
ind(T) = dim ker T — dim ker T

and is a continuous homomorphism which is invariant under compact
perturbation.

The relevance of index to our problem lies in the following. By our
earlier remarks [Tz, T:] is compact and ae(Tz)= T; therefore Tz is
Fredholm. Further, relative to the orthonormal basis {1, z, z2, ---} for
H2(T), T, is the unilateral shift (that is, Tzzn = z™1 for n > 0), while
T: is the backward shift. Thus if (ag,aq --+) are the Fourier coefficients
for f in H(T), then Tylag,a; )= (0,ay,a, ) and Tiag,a,, )=
(al,az, --»). Therefore, dim ker Tz =0, and dim ker T: =1, and hence
ind T, =-1. Since INx||2 = (N*Nx, x) = (NN*x, x) = [N*x/|2 for N riormal
on § and x in §, it follows that ker N = ker N* and hence ind N=0
if N is Fredholm. Therefore, the assumption that T,=N+K where N

is normal and K is compact leads to the contradiction

-1 = ind(T,) = ind(N+K) = ind(N) = 0.
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Now not only does index provide us with an example of an essentially
normal operator which is not of the form normal plus compact, index is the
only other ingredient needed to classify essentially normal operators.

This is the main result for essentially nomal operators.

THEOREM 2. Two essentially normal operators T, and T, are unitari-
ly equivalent modulo KX if and only if ae(Tl) = oe(Tz) =X and ind (Tl—)\)
= ind(T,-A) for A in C\X.

Now what does this have to do with extensions? If 5,1. denotes the
C*-subalgebra of £($) generated by I, T and K (%), then the
quotient &./K(®) is the C*-subalgebra of 2($) generated by 1 and
#(T). Since 5T/K(©) is commutative we have

E./K($) = Clogg)@(TH) = Clog(T)

by the spectral theorem and we have an extension

o}
0 — K@) — 61 —5 Clon(T) — 0,

where d’T is the restriction of 7 to g’l" Moreover, one can show that

the two extensions (&r é.p ) and (6T ,¢p ) are equivalent (in a
1 1 2 2

sense which we make clear in the next chapter) if and only if T; and T,
are unitarily equivalent modulo K. Furthermore, if K(9)C &
and X C C are such that

0 K L 6L e — o

is exact, then any T in & is essentially normal. Moreover, if (T)= z,
then o (T) = X and (6T,¢T) is equivalent to (&6,4). Thus all exten-
sions of K by C(X) arise from essentially normal operators for X C C.
Therefore the problem of classifying essentially normal operators is

equivalent to that of classifying extensions.
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Thus there are various reasons to be interested in extensions of K
by C(X). In our study of these extensions the equivalence classes for
fixed X are shown to form an abelian group Ext(X) such that
X » Ext(X) defines a homotopy invariant covariant functor. Moreover,
this functor can be used to define a generalized Steenrod homology theory
which is dual to K-theory. Let me conclude this chapter by showing how
this proves the theorem stated earlier.

One of the pairings we define between Ext and K-theory yields a
homomorphism

Y. : Ext(X) » Hom (K'(X), Z)
which we show is an isomorphism for X C (. In this special case we

will write y, for this homomorphism. Since X C C we have
K!(X) = H'(X,2) - (%),

where 71(X) is the first cohomotopy group of X or the group relative to
pointwise multiplication of homotopy classes of maps from X into the

nonzero complex numbers C*. The definition of
y, : Ext(X) » Hom @(X),7)
goes as follows: fix (6, 4) in Ext(X) and for f: X > C* we define

¥ (&, ) f] = ind($ (),

where [f] denotes the element of 7r1(X) defined by f. To see that this
is well defined, note that qS_l(f) is not a unique Fredholm operator but
has a well-defined index which depends only on the homotopy class of f.
It is easy to check that y; is a homomorphism. Now for X C C what is
7 (X)? If welet C\X=0_UO;UO,U - denote the components, where
O, is the unbounded one, then #1(X) is the free abelian group with one
generator for each bounded component. For the extension (E’T’ b s the
homomorphism yl({';T,q_ST) is defined by [Oi] > ny, where n; =

ind(T-A;) for some A; in 0;, and now Theorem 2 is obvious. Moreover,



1. AN OVERVIEW 11

since y, is surjective, the equivalence classes of essentially normal
operators with essential spectrum X are obtained by prescribing arbitrary
integers for the bounded components of the complement of X in C.

Equivalently, since
Hom (#1(X), Z) = Hom(H(X,Z),Z) = H(C\X,Z) = {C\X,Z]

by Steenrod duality (where [C\X,Z] denotes the group of locally constant
integer-valued functions defined on C\X) y, can be defined by

y G b)) = ind (T-AD)
and Theorem 2 is obvious.

Although our proof certainly involves operator theory, it also involves
a critical use of ideas and techniques from algebraic topology and homo-
logical algebra. Moreover, there is presently no proof of these results
which does not.! In fact there is no purely operator theoretic proof of

either of the following corollaries

COROLLARY. An essentially normal operator T isin Nl + K if and
only if ind(T-A)=0 for A in C\og(T).

COROLLARY. The collection U+ K is norm-closed.

The situation in several variables is more subtle. For example, the
analogue of the last corollaty is false for compact perturbations of commut-

ing pairs of normal operators. More precisely, the collection

{N+K,, N +K, : N, N, JL,IN; N1 = 0,K,, K, €K}

1In [30] Davie gives an exposition of the proofs of these results in which the
ideas from operator theory and algebraic topology are separated as much as possi-
ble and the latter kept to a minimum.
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is not norm closed. Why is that the case? Certain types of topological
pathologies cannot occur in C but do in C? (and all C" for n> 2).
Here we are using the fact that the generalized homology theory defined
by Ext is not continuous. Thus Ext is sensitive enough to detect these
pathologies.

The existence of the above pathology for pairs causes me to doubt

that a purely operator theoretic proof of the last corollary is possible.



