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Preface to the Second Edition

Since the publication of the first edition of this book in 2008, significant
developments have been made in metaheuristics, and new nature-inspired
metaheuristic algorithms emerge, including cuckoo search and bat algo-
rithms. Many readers have taken time to write to me personally, providing
valuable feedback, asking for more details of algorithm implementation,
or simply expressing interests in applying these new algorithms in their
applications.

In this revised edition, we strive to review the latest developments in
metaheuristic algorithms, to incorporate readers’ suggestions, and to pro-
vide a more detailed description to algorithms. Firstly, we have added
detailed descriptions of how to incorporate constraints in the actual imple-
mentation. Secondly, we have added three chapters on differential evolu-
tion, cuckoo search and bat algorithms, while some existing chapters such
as ant algorithms and bee algorithms are combined into one due to their
similarity. Thirdly, we also explained artificial neural networks and sup-
port vector machines in the framework of optimization and metaheuristics.
Finally, we have been trying in this book to provide a consistent and uni-
fied approach to metaheuristic algorithms, from a brief history in the first
chapter to the unified approach in the last chapter.

Furthermore, we have provided more Matlab programs. At the same
time, we also omit some of the implementation such as genetic algorithms,
as we know that there are many good software packages (both commercial
and open course). This allows us to focus more on the implementation of
new algorithms. Some of the programs also have a version for constrained
optimization, and readers can modify them for their own applications.

Even with the good intention to cover most popular metaheuristic al-
gorithms, the choice of algorithms is a difficult task, as we do not have
the space to cover every algorithm. The omission of an algorithm does not
mean that it is not popular. In fact, some algorithms are very powerful
and routinely used in many applications. Good examples are Tabu search
and combinatorial algorithms, and interested readers can refer to the refer-
ences provided at the end of the book. The effort in writing this little book
becomes worth while if this book could in some way encourage readers’
interests in metaheuristics.

Xin-She Yang

August 2010
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Preface to the First Edition

Modern metaheuristic algorithmms such as the ant colony optimization and
the harmony search start to demonstrate their power in dealing with tough
optimization problems and even NP-hard problems. This book reviews and
introduces the state-of-the-art nature-inspired metaheuristic algorithms in
optimization, including genetic algorithms (GA), particle swarm optimiza-
tion (PSO), simulated annealing (SA), ant colony optimization (ACO), bee
algorithms (BA), harmony search (HS), firefly algorithms (FA), photosyn-
thetic algorithm (PA), enzyme algorithm (EA) and Tabu search. By imple-
menting these algorithms in Matlab/Octave, we will use worked examples
to show how each algorithm works. This book is thus an ideal textbook for
an undergraduate and/or graduate course. As some of the algorithms such
as the harmony search and firefly algorithms are at the forefront of current
research, this book can also serve as a reference book for researchers.

I would like to thank my editor, Andy Adamatzky, at Luniver Press for
his help and professionalism. Last but not least, I thank my wife and son
for their help.

Xin-She Yang

Cambridge, 2008
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Chapter 1

INTRODUCTION

It is no exaggeration to say that optimization is everywhere, from engi-
neering design to business planning and from the routing of the Internet to
holiday planning. In almost all these activities, we are trying to achieve cer-
tain objectives or to optimize something such as profit, quality and time.
As resources, time and money are always limited in real-world applica-
tions, we have to find solutions to optimally use these valuable resources
under various constraints. Mathematical optimization or programming is
the study of such planning and design problems using mathematical tools.
Nowadays, computer simulations become an indispensable tool for solving
such optimization problems with various efficient search algorithms.

1.1 OPTIMIZATION

Mathematically speaking, it is possible to write most optimization problems
in the generic form

MRS (=), (i=1,2,..,M), (1.1)
subject to h;(x) =0, (j =1,2,....J), (1.2)
ge(x) <0, (k=12,...K), (1.3)

where f;(x), h;j(x) and gi(x) are functions of the design vector
i
B = (B E5500 T ) s (1.4)

Here the components x; of & are called design or decision variables, and
they can be real continuous, discrete or the mixed of these two.

The functions f;(x) where i = 1,2, ..., M are called the objective func-
tions or simply cost functions, and in the case of M = 1, there is only a
single objective. The space spanned by the decision variables is called the
design space or search space R™, while the space formed by the objective
function values is called the solution space or response space. The equali-
ties for h; and inequalities for g, are called constraints. It is worth pointing

Nature-Inspired Metaheuristic Algorithms. 2nd Edition by Xin-She Yang 1
Copyright © 2010 Luniver Press



2 CHAPTER 1. INTRODUCTION

out that we can also write the inequalities in the other way > 0, and we
can also formulate the objectives as a maximization problem.

In a rare but extreme case where there is no objective at all, there are
only constraints. Such a problem is called a feasibility problem because
any feasible solution is an optimal solution.

If we try to classify optimization problems according to the number
of objectives, then there are two categories: single objective M = 1 and
multiobjective M > 1. Multiobjective optimization is also referred to as
multicriteria or even multi-attributes optimization in the literature. In
real-world problems, most optimization tasks are multiobjective. Though
the algorithms we will discuss in this book are equally applicable to mul-
tiobjective optimization with some modifications, we will mainly place the
emphasis on single objective optimization problems.

Similarly, we can also classify optimization in terms of number of con-
straints J + K. If there is no constraint at all J = K = 0, then it is
called an unconstrained optimization problem. If K = 0 and J > 1, it is
called an equality-constrained problem, while J = 0 and K > 1 becomes
an inequality-constrained problem. It is worth pointing out that in some
formulations in the optimization literature, equalities are not explicitly in-
cluded, and only inequalities are included. This is because an equality
can be written as two inequalities. For example h(x) = 0 is equivalent to
h(z) <0 and h(x) > 0.

We can also use the actual function forms for classification. The objec-
tive functions can be either linear or nonlinear. If the constraints h; and g
are all linear, then it becomes a linearly constrained problem. If both the
constraints and the objective functions are all linear, it becomes a linear
programming problem. Here ‘programming’ has nothing to do with com-
puting programming, it means planning and/or optimization. However,
generally speaking, all f;, h; and g are nonlinear, we have to deal with a
nonlinear optimization problem.

1.2 SEARCH FOR OPTIMALITY

After an optimization problem is formulated correctly, the main task is
to find the optimal solutions by some solution procedure using the right
mathematical techniques.

Figuratively speaking, searching for the optimal solution is like treasure
hunting. Imagine we are trying to hunt for a hidden treasure in a hilly
landscape within a time limit. In one extreme, suppose we are blind-
fold without any guidance, the search process is essentially a pure random
search, which is usually not efficient as we can expect. In another extreme,
if we are told the treasure is placed at the highest peak of a known region,
we will then directly climb up to the steepest cliff and try to reach to the
highest peak, and this scenario corresponds to the classical hill-climbing
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techniques. In most cases, our search is between these extremes. We are
not blind-fold, and we do not know where to look for. It is a silly idea to
search every single square inch of an extremely large hilly region so as to
find the treasure.

The most likely scenario is that we will do a random walk, while looking
for some hints; we look at some place almost randomly, then move to an-
other plausible place, then another and so on. Such random walk is a main
characteristic of modern search algorithms. Obviously, we can either do
the treasure-hunting alone, so the whole path is a trajectory-based search,
and simulated annealing is such a kind. Alternatively, we can ask a group
of people to do the hunting and share the information (and any treasure
found), and this scenario uses the so-called swarm intelligence and corre-
sponds to the particle swarm optimization, as we will discuss later in detail.
If the treasure is really important and if the area is extremely large, the
search process will take a very long time. If there is no time limit and if any
region is accessible (for example, no islands in a lake), it is theoretically
possible to find the ultimate treasure (the global optimal solution).

Obviously, we can refine our search strategy a little bit further. Some
hunters are better than others. We can only keep the better hunters and
recruit new ones, this is something similar to the genetic algorithms or
evolutionary algorithms where the search agents are improving. In fact, as
we will see in almost all modern metaheuristic algorithms, we try to use the
best solutions or agents, and randomize (or replace) the not-so-good ones,
while evaluating each individual’s competence (fitness) in combination with
the system history (use of memory). With such a balance, we intend to
design better and efficient optimization algorithms.

Classification of optimization algorithm can be carried out in many ways.
A simple way is to look at the nature of the algorithm, and this divides the
algorithms into two categories: deterministic algorithms, and stochastic
algorithms. Deterministic algorithms follow a rigorous procedure, and its
path and values of both design variables and the functions are repeatable.
For example, hill-climbing is a deterministic algorithm, and for the same
starting point, they will follow the same path whether you run the program
today or tomorrow. On the other hand, stochastic algorithms always have
some randomness. Genetic algorithms are a good example, the strings or
solutions in the population will be different each time you run a program
since the algorithms use some pseudo-random numbers, though the final
results may be no big difference, but the paths of each individual are not
exactly repeatable.

Furthermore, there is a third type of algorithm which is a mixture, or
a hybrid, of deterministic and stochastic algorithms. For example, hill-
climbing with a random restart is a good example. The basic idea is to
use the deterministic algorithm, but start with different initial points. This
has certain advantages over a simple hill-climbing technique, which may be
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stuck in a local peak. However, since there is a random component in this
hybrid algorithm, we often classify it as a type of stochastic algorithm in
the optimization literature.

1.3 NATURE-INSPIRED METAHEURISTICS

Most conventional or classic algorithms are deterministic. For example, the
simplex method in linear programming is deterministic. Some determinis-
tic optimization algorithms used the gradient information, they are called
gradient-based algorithms. For example, the well-known Newton-Raphson
algorithm is gradient-based, as it uses the function values and their deriva-
tives, and it works extremely well for smooth unimodal problems. However,
if there is some discontinuity in the objective function, it does not work
well. In this case, a non-gradient algorithm is preferred. Non-gradient-
based or gradient-free algorithms do not use any derivative, but only the
function values. Hooke-Jeeves pattern search and Nelder-Mead downhill
simplex are examples of gradient-free algorithms.

For stochastic algorithms, in general we have two types: heuristic and
metaheuristic, though their difference is small. Loosely speaking, heuristic
means ‘to find’” or ‘to discover by trial and error’. Quality solutions to a
tough optimization problem can be found in a reasonable amount of time,
but there is no guarantee that optimal solutions are reached. It hopes
that these algorithms work most of the time, but not all the time. This is
good when we do not necessarily want the best solutions but rather good
solutions which are easily reachable.

Further development over the heuristic algorithms is the so-called meta-
heuristic algorithms. Here meta- means ‘beyond’ or ‘higher level’, and
they generally perform better than simple heuristics. In addition, all meta-
heuristic algorithms use certain tradeoft of randomization and local search.
It is worth pointing out that no agreed definitions of heuristics and meta-
heuristics exist in the literature; some use ‘heuristics’ and ‘metaheuristics’
interchangeably. However, the recent trend tends to name all stochastic
algorithms with randomization and local search as metaheuristic. Here we
will also use this convention. Randomization provides a good way to move
away from local search to the search on the global scale. Therefore, almost
all metaheuristic algorithms intend to be suitable for global optimization.

Heuristics is a way by trial and error to produce acceptable solutions to
a complex problem in a reasonably practical time. The complexity of the
problem of interest makes it impossible to search every possible solution
or combination, the aim is to find good feasible solution in an acceptable
timescale. There is no guarantee that the best solutions can be found, and
we even do not know whether an algorithm will work and why if it does
work. The idea is to have an efficient but practical algorithm that will
work most the time and is able to produce good quality solutions. Among
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the found quality solutions, it is expected some of them are nearly optimal,
though there is no guarantee for such optimality.

Two major components of any metaheuristic algorithms are: intensifi-
cation and diversification, or exploitation and exploration. Diversification
means to generate diverse solutions so as to explore the search space on the
global scale, while intensification means to focus on the search in a local
region by exploiting the information that a current good solution is found
in this region. This is in combination with with the selection of the best
solutions. The selection of the best ensures that the solutions will converge
to the optimality, while the diversification via randomization avoids the
solutions being trapped at local optima and, at the same time, increases
the diversity of the solutions. The good combination of these two major
components will usually ensure that the global optimality is achievable.

Metaheuristic algorithms can be classified in many ways. One way is
to classify them as: population-based and trajectory-based. For example,
genetic algorithms are population-based as they use a set of strings, so
is the particle swarm optimization (PSO) which uses multiple agents or
particles.

On the other hand, simulated annealing uses a single agent or solution
which moves through the design space or search space in a piecewise style.
A better move or solution is always accepted, while a not-so-good move
can be accepted with a certain probability. The steps or moves trace a tra-
jectory in the search space, with a non-zero probability that this trajectory
can reach the global optimum.

Before we introduce all popular meteheuristic algorithms in detail, let
us look at their history briefly.

1.4 A BRIEF HISTORY OF METAHEURISTICS

Throughout history, especially at the early periods of human history, we
humans’ approach to problem-solving has always been heuristic or meta-
heuristic — by trial and error. Many important discoveries were done
by ‘thinking outside the box’, and often by accident; that is heuristics.
Archimedes’s Eureka moment was a heuristic triumph. In fact, our daily
learning experience (at least as a child) is dominantly heuristic.

Despite its ubiquitous nature, metaheuristics as a scientific method to
problem solving is indeed a modern phenomenon, though it is difficult to
pinpoint when the metaheuristic method was first used. Alan Turing was
probably the first to use heuristic algorithms during the second World War
when he was breaking German Enigma ciphers at Bletchley Park. Turing
called his search method heuristic search, as it could be expected it worked
most of time, but there was no guarantee to find the correct solution,
but it was a tremendous success. In 1945, Turing was recruited to the
National Physical Laboratory (NPL), UK where he set out his design for
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the Automatic Computing Engine (ACE). In an NPL report on Intelligent
machinery in 1948, he outlined his innovative ideas of machine intelligence
and learning, neural networks and evolutionary algorithms.

The 1960s and 1970s were the two important decades for the develop-
ment of evolutionary algorithms. First, John Holland and his collaborators
at the University of Michigan developed the genetic algorithms in 1960s
and 1970s. As early as 1962, Holland studied the adaptive system and was
the first to use crossover and recombination manipulations for modeling
such system. His seminal book summarizing the development of genetic
algorithms was published in 1975. In the same year, De Jong finished his
important dissertation showing the potential and power of genetic algo-
rithms for a wide range of objective functions, either noisy, multimodal or
even discontinuous.

In essence, a genetic algorithm (GA) is a search method based on the ab-
straction of Darwinian evolution and natural selection of biological systems
and representing them in the mathematical operators: crossover or recom-
bination, mutation, fitness, and selection of the fittest. Ever since, genetic
algorithms become so successful in solving a wide range of optimization
problems, there have several thousands of research articles and hundreds
of books written. Some statistics show that a vast majority of Fortune
500 companies are now using them routinely to solve tough combinatorial
optimization problems such as planning, data-fitting, and scheduling.

During the same period, Ingo Rechenberg and Hans-Paul Schwefel both
then at the Technical University of Berlin developed a search technique for
solving optimization problem in aerospace engineering, called evolutionary
strategy, in 1963. Later, Peter Bienert joined them and began to construct
an automatic experimenter using simple rules of mutation and selection.
There was no crossover in this technique, only mutation was used to pro-
duce an offspring and an improved solution was kept at each generation.
This was essentially a simple trajectory-style hill-climbing algorithm with
randomization. As early as 1960, Lawrence J. Fogel intended to use simu-
lated evolution as a learning process as a tool to study artificial intelligence.
Then, in 1966, L. J. Fogel, together A. J. Owen and M. J. Walsh, developed
the evolutionary programming technique by representing solutions as finite-
state machines and randomly mutating one of these machines. The above
innovative ideas and methods have evolved into a much wider discipline,
called evolutionary algorithms and/or evolutionary computation.

Although our focus in this book is metaheuristic algorithms, other al-
gorithms can be thought as a heuristic optimization technique. These in-
cludes artificial neural networks, support vector machines and many other
machine learning techniques. Indeed, they all intend to minimize their
learning errors and prediction (capability) errors via iterative trials and
errors.
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Artificial neural networks are now routinely used in many applications.
In 1943, W. McCulloch and W. Pitts proposed the artificial neurons as
simple information processing units. The concept of a neural network was
probably first proposed by Alan Turing in his 1948 NPL report concerning
‘intelligent machinery’. Significant developments were carried out from the
1940s and 1950s to the 1990s with more than 60 years of history.

The support vector machine as a classification technique can date back to
the earlier work by V. Vapnik in 1963 on linear classifiers, and the nonlinear
classification with kernel techniques were developed by V. Vapnik and his
collaborators in the 1990s. A systematical summary in Vapnik’s book on
the Nature of Statistical Learning Theory was published in 1995.

The two decades of 1980s and 1990s were the most exciting time for
metaheuristic algorithms. The next big step is the development of simu-
lated annealing (SA) in 1983, an optimization technique, pioneered by S.
Kirkpatrick, C. D. Gellat and M. P. Vecchi, inspired by the annealing pro-
cess of metals. It is a trajectory-based search algorithm starting with an
initial guess solution at a high temperature, and gradually cooling down
the system. A move or new solution is accepted if it is better; otherwise,
it is accepted with a probability, which makes it possible for the system to
escape any local optima. It is then expected that if the system is cooled
down slowly enough, the global optimal solution can be reached.

The actual first usage of memory in modern metaheuristics is probably
due to Fred Glover’s Tabu search in 1986, though his seminal book on Tabu
search was published later in 1997.

In 1992, Marco Dorigo finished his PhD thesis on optimization and nat-
ural algorithms, in which he described his innovative work on ant colony
optimization (ACO). This search technique was inspired by the swarm in-
telligence of social ants using pheromone as a chemical messenger. Then, in
1992, John R. Koza of Stanford University published a treatise on genetic
programming which laid the foundation of a whole new area of machine
learning, revolutionizing computer programming. As early as in 1988, Koza
applied his first patent on genetic programming. The basic idea is to use the
genetic principle to breed computer programs so as to gradually produce
the best programs for a given type of problem.

Slightly later in 1995, another significant progress is the development
of the particle swarm optimization (PSO) by American social psychologist
James Kennedy, and engineer Russell C. Eberhart. Loosely speaking, PSO
is an optimization algorithm inspired by swarm intelligence of fish and birds
and by even human behavior. The multiple agents, called particles, swarm
around the search space starting from some initial random guess. The
swarm communicates the current best and shares the global best so as to
focus on the quality solutions. Since its development, there have been about
20 different variants of particle swarm optimization techniques, and have
been applied to almost all areas of tough optimization problems. There is
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some strong evidence that PSO is better than traditional search algorithms
and even better than genetic algorithms for many types of problems, though
this is far from conclusive.

In around 1996 and later in 1997, R. Storn and K. Price developed their
vector-based evolutionary algorithm, called differential evolution (DE), and
this algorithm proves more efficient than genetic algorithms in many ap-
plications.

In 1997, the publication of the ‘no free lunch theorems for optimization’
by D. H. Wolpert and W. G. Macready sent out a shock way to the opti-
mization community. Researchers have been always trying to find better
algorithms, or even universally robust algorithms, for optimization, espe-
cially for tough NP-hard optimization problems. However, these theorems
state that if algorithm A performs better than algorithm B for some opti-
mization functions, then B will outperform A for other functions. That is
to say, if averaged over all possible function space, both algorithms A and B
will perform on average equally well. Alternatively, there is no universally
better algorithms exist. That is disappointing, right? Then, people real-
ized that we do not need the average over all possible functions for a given
optimization problem. What we want is to find the best solutions, which
has nothing to do with average over all possible function space. In addition,
we can accept the fact that there is no universal or magical tool, but we do
know from our experience that some algorithms indeed outperform others
for given types of optimization problems. So the research now focuses on
finding the best and most efficient algorithm(s) for a given problem. The
objective is to design better algorithms for most types of problems, not for
all the problems. Therefore, the search is still on.

At the turn of the 21st century, things became even more exciting. First,
Zong Woo Geem et al. in 2001 developed the harmony search (HS) algo-
rithm, which has been widely applied in solving various optimization prob-
lems such as water distribution, transport modelling and scheduling. In
2004, S. Nakrani and C. Tovey proposed the honey bee algorithm and its
application for optimizing Internet hosting centers, which followed by the
development of a novel bee algorithm by D. T. Pham et al. in 2005 and the
artificial bee colony (ABC) by D. Karaboga in 2005. In 2008, the author of
this book developed the firefly algorithm (FA)!. Quite a few research arti-
cles on the firefly algorithm then followed, and this algorithm has attracted
a wide range of interests. In 2009, Xin-She Yang at Cambridge University,
UK, and Suash Deb at Raman College of Engineering, India, introduced
an efficient cuckoo search (CS) algorithm, and it has been demonstrated
that CS is far more effective than most existing metaheuristic algorithms

1X. S. Yang, Nature-Inspired Meteheuristic Algorithms, Luniver Press, (2008)



