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Preface to the Second Edition

This expanded and corrected second edition has a new chapter on
the important topic of equidistribution. Undoubtedly, one cannot
give an exhaustive treatment of the subject in a short chapter. How-
ever, we hope that the problems presented here are enticing that the
student will pursue further and learn from other sources.

A problem style presentation of the fundamental topics of ana-
lytic number theory has its virtues, as I have heard from those who
benefited from the first edition. Mere theoretical knowledge in any
field is insufficient for a full appreciation of the subject and one of-
ten needs to grapple with concrete questions in which these ideas
are used in a vital way. Knowledge and the various layers of “know-
ing” are difficult to define or describe. However, one learns much
and gains insight only through practice. Making mistakes is an in-
tegral part of learning. Indeed, “it is practice first and knowledge
afterwards.”

Kingston, Ontario, Canada, September 2007 M. Ram Murty
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Preface to the First Edition

“In order to become proficient in mathematics, or in any subject,”
writes André Weil, “the student must realize that most topics in-
volve only a small number of basic ideas.” After learning these basic
concepts and theorems, the student should “drill in routine exer-
cises, by which the necessary reflexes in handling such concepts
may be acquired. ... There can be no real understanding of the basic
concepts of a mathematical theory without an ability to use them in-
telligently and apply them to specific problems.” Weil’s insightful
observation becomes especially important at the graduate and re-
search level. It is the viewpoint of this book. Our goal is to acquaint
the student with the methods of analytic number theory as rapidly
as possible through examples and exercises.

Any landmark theorem opens up a method of attacking other
problems. Unless the student is able to sift out from the mass of the-
ory the underlying techniques, his or her understanding will only
be academic and not that of a participant in research. The prime
number theorem has given rise to the rich Tauberian theory and a
general method of Dirichlet series with which one can study the as-
ymptotics of sequences. It has also motivated the development of
sieve methods. We focus on this theme in the book. We also touch
upon the emerging Selberg theory (in Chapter 8) and p-adic analytic
number theory (in Chapter 10).



xii Preface

This book is a collection of about five hundred problems in ana-
lytic number theory with the singular purpose of training the begin-
ning graduate student in some of its significant techniques. As such,
it is expected that the student has had at least a semester course in
each of real and complex analysis. The problems have been orga-
nized with the purpose of self-instruction. Those who exercise their
mental muscles by grappling with these problems on a daily basis
will develop not only a knowledge of analytic number theory but
also the discipline needed for self-instruction, which is indispens-
able at the research level.

The book is ideal for a first course in analytic number theory ei-
ther at the senior undergraduate level or the graduate level. There
are several ways to give such a course. An introductory course at
the senior undergraduate level can focus on chapters 1, 2, 3, 9, and
10. A beginning graduate course can in addition cover chapters 4,
5, and 8. An intense graduate course can easily cover the entire text
in one semester, relegating some of the routine chapters such as
chapters 6, 7, and 10 to student presentations. Or one can take up a
chapter a week during a semester course with the instructor focus-
ing on the main theorems and illustrating them with a few worked
examples.

“In the course of training students for graduate research, I found
it tedious to keep repeating the cyclic pattern of courses in ana-
lytic and algebraic number theory. This book, along with my other
book “Problems in Algebraic Number Theory” (written jointly with
]J. Esmonde), which appears as Graduate Texts in Mathematics, Vol.
190, are intended to enable the student gain a quick initiation into
the beautiful subject of number theory. No doubt, many important
topics have been left out. Nevertheless, the material included here
is a “basic tool kit” for the number theorist and some of the harder
exercises reveal the subtle “tricks of the trade.”

Unless the mind is challenged, it does not perform. The student
is therefore advised to work through the questions with some at-
tention to the time factor. “Work expands to fill the time allotted
to it” and so if no upper limit is assigned, the mind does not get fo-
cused. There is no universal rule on how long one should work on a
problem. However, it is a well-known fact that self-discipline, what-
ever shape it may take, opens the door for inspiration. If the mental
muscles are exercised in this fashion, the nuances of the solution



Preface Xiii
become clearer and significant. In this way, it is hoped that many,

who do not have access to an “external teacher” will benefit by the
approach of this text and awaken their “internal teacher.”

Princeton, November 1999 M. Ram Murty
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