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Introduction

The first volume of this book was devoted to the study of the cohomology
of compact Kihler manifolds. The main results there can be summarised as
follows. (Throughout this volume, we write for example v1.6.1 to refer to
volume I, section 6.1.)

The Hodge decomposition (v1.6.1). If X is acompact Kihler manifold, then
for each integer k, we have a canonical decomposition

k o ),
HY(X, © = @pﬁ,:k H"4(X),

known as the Hodge decomposition, depending only on the complex structure
of X. Every space H?9(X) C H*(X, C) can be identified with the set of
cohomology classes representable in de Rham cohomology by a closed form
which is of type (p, ¢) at every point of X, relative to the complex structure on
X. In particular, we have the Hodge symmetry

HIMI(X) — Hq.p(x ).

wherea — & denotes the natural action of complex conjugationon H*(X, C) =
H*(X,R)® C. The Hodge filtration F on H*(X, C) is the decreasing filtration
defined by

ipgk _ pk—p
FIHYX,C)= @pz, H (X).
The Lefschetz decomposition (v1.6.2). Let w be a Kihler form on X. Then
w is a real closed 2-form of class [w] € H*(X, R). We write
L: HYX.R) —» H"(X.R)

for the operator (known as the Lefschetz operator) obtained by taking the cup-
product with the class [w]. For n = dimc X, and for every k < n, we have

1



2 0 Introduction
isomorphisms
L"*: HY(X,R) > H”M(X,R)

(this result is known as the hard Lefschetz theorem), and thus we have the
Lefschetz decomposition

H' X, R) =P, _ L' H* (X, R)prim. k <,
where the primitive cohomology H'(X, R)prim for ! < n is defined by

H'(X, R)prim = Ker (L" ' : HI(X,R) » H* (X, R)).

Mixed Hodge structures (vI.8.4). Let X be a compact Kdhler manifold, and
let Z C X be a closed analytic subset. Let U be the open set X — Z. Then the
cohomology groups H*(U, Q) are equipped with a mixed Hodge structure of
weight n, i.e. with two filtrations W and F, an increasing filtration W defined
over @, and a decreasing filtration F defined over C, satisfying the condition:

The filtration F; induced by F on each space K; := Gr,W H*WU, C) equips K;
with a pure Hodge structure of weight n +1i.

This means that for every integer p, it satisfies the condition

FlK; oF, "k = ki,

which implies the existence of a Hodge decomposition

1 ' —n+i—p
K= kM, Kk =F'KinFE;TUK:.
prg=n+i ! !

Variations of Hodge structure (vI.10.1). If ¢ : X — Y is a proper holo-
morphic submersive map with Kahler fibres, the Hodge filtration on the coho-
mology of the fibres X, of ¢ varies holomorphically in the following sense.
By Ehresmann’s theorem, locally over each point 0 € Y, the fibration ¢ admits
differentiable trivialisations

F=(Fo¢): Xy ZXoxU, Xy:=¢ '(U).

The map Fy is a retraction of X onto the fibre X, and foreach y € U, it induces
a diffeomorphism X, = X. In particular, we have a canonical isomorphism
when U is contractible, namely the isomorphism

HX(X,, Z) = H(Xo, Z)
obtained by combining the two restriction isomorphisms

HYXy,Z)= H"Xo,Z) and H'Xy,Z)= H'X,,2Z).
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Letting r; denote the integer dim F' H*(X,, C) for all y € Y, then for each
integer i, we have the map

P : U — Grass(ri, H (X, C)),
which to y € U associates the subspace
F'HY(X,,C) c H'(X,,C) = H*(X,, C).

The fact that the Hodge filtration varies holomorphically with the complex
structure on the fibres can be expressed by the fact that the so-called period
map P is holomorphic for every k, i.

Transversality (vI.10.2). The period map defined above locally gives a holo-
morphic subbundle

FiH* ¢ HE,

where H* = H¥(Xo, C)® Oy, is the sheaf of sections of the trivial holomorphic
vector bundle with fibre H*(X,, C). Let V : H* — H* ® ©;; be the connection
given by the usual differentiation of functions in the trivialisation above.

The Griffiths transversality condition is, without a doubt, the most important
notion in the theory of variations of Hodge structure. It states that the Hodge
bundles FH* satisfy the property

VFH c Fr'HY @ Q.
Note that the data (¥, FH*, V) are in fact globally defined on Y, but they

are only locally trivial; V is known as the Gauss—Manin connection. In general,
the Hodge bundle will be defined by

H' = HE ® Oy,
where H{ = R*¢,C. The isomorphisms used above,
HiU) = HYX,,C) for yeU,

simply show that H{ is a local system, and give local trivialisations H¢: of H*.

Cycle classes and the Abel-Jacobi map (vI.11.1,vI.12.1). LetZ C X bea
closed, reduced and irreducible analytic subset of codimension k of a compact
Kihler manifold X . We have the cohomology class [Z] € Hz"(X AR Wthh can
be defined, for example, as the Poincaré dual class of j*[Z]fund where j : 7>
Z — X isadesingularisation of Z and [Z]fund € H2d|m7(z Z) is the homology
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class of the smooth compact oriented manifold Z. Then the image of the class
[Z]in H%*(X, C) lies in H**(X). Such a class is called a Hodge class.

Using Hodge theory, one can also define secondary invariants, called Abel—
Jacobi invariants, for acycle Z = )", n; Z; of codimension k which is homol-
ogous to 0, i.e. which is such that Y, n;[Z;] = 0 in H*(X.Z). The Hodge
decomposition gives a decomposition

H* (X, C) = FFH*'(X) @ FFH¥1(X).
We then define the kth intermediate Jacobian of X as the complex torus
JHENX) = H* (X O/ FH* (X)) @ H* (X, 2)).
and we have the Abel-Jacobi invariant
D4 (Z) e J*N(X)

defined by Griffiths. The Abel-Jacobi map generalises the Albanese map for
0-cycles given by

alby : Zo(X)hom — J¥" (X)) = HOX.Qx)*/H\(X.Z). n=dimX

:r—)/ e HYX, Qyx)", dy = z.
Y

These results highlight the existence of relations between Hodge theory, topol-
ogy, and the analytic cycles of a Kihler manifold. For example, the Hodge
decomposition and the Hodge symmetry show that the Betti numbers b;(X) =
rank H'(X . Z) are even whenever i is odd. The hard Lefschetz theorem shows
that the Betti numbers h,; are increasing for 2i < n = dim X, and that the
Betti numbers by;_; are increasing for 2/ — 1 < n = dim X. The cycle class
map shows that the existence of interesting analytic cycles of codimension &
is related to the existence of Hodge classes of degree 2k, which can be seen
on the Hodge structure on H*(X). Finally, in the algebraic case, where we
may assume that the class [w] is integral and is even the cohomology class of a
hypersurface ¥ C X, the hard Lefschetz theorem partly implies the Lefschetz
theorem on hyperplane sections, which says that if j : ¥ < X is the inclusion
of an ample hypersurface, then the restriction map

j* HYX.Z) — HNY. Z)

is an isomorphism for & < dimY and an injection for k = t-iim Y. Indeed, by
Kodaira’s embedding theorem, the ampleness of Y is equivalent to the condition
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that the real cohomology class [Y] € H?(X, R) is a Kiihler class. As we have
the equalities

j*oj*:L, j*O]’*ZLY'

where L (resp. Ly) is the Lefschetz operator associated to the Kéhler class [Y]
(resp. [Y ]jy), the hard Lefschetz theorem shows for example that the restriction
map j* : HYNX, Q) - HYY,Q)is injective for k < dimY and surjective for
k > dimY.

The fact that the period map is holomorphic also gives relations between
Hodge theory and algebraic geometry. For example, it enables us (at least
partially) to study moduli spaces classifying the deformations of the complex
structure on a polarised algebraic variety, and possibly, when the period map
is injective, to realise these moduli spaces as subspaces of domains of global
periods. Other subtler applications of the fact that the period map is holomorphic
come from the study of the curvature of the Hodge bundles, which can make it
possible to polarise the moduli space itself (see Viehweg 1995; Griffiths 1984).
Finally, we also deduce that for a family of smooth projective or compact Kéhler
varieties ¢ : X — Y, the Hodge loci Y)’f C Y forasection A of the local system
R**¢,7, which are defined by

Yi=1lyeY |xr e FFH*(X,,C)).

are analytic subsets of Y. This result agrees with the Hodge conjecture, which
predicts that y € Y} if and only if a multiple of Ay is the cohomology class of
acycle Z, C X, of codimension &, so that Y is the image in Y of a relative
Hilbert scheme parametrising subvarieties in the fibres of ¢.

The applications described above do not constitute particularly tight links
between the topology of algebraic varieties, their algebraic cycles and their
Hodge theory. The present volume is devoted to the description of much finer
interactions between these three domains. We do not, however, propose an
exhaustive description of these interactions here, and each of the three parts
of this volume ends with a sketch of possible developments which lie beyond
the scope of this course. The remainder of this introduction aims to give a
synthetic picture of these interactions, which might otherwise be obscured by
the separation of the volume into three seemingly independent parts.

Two themes which recur constantly throughout this volume are the Lefschetz
theorems and Leray spectral sequences. In the first case, we compare the topol-
ogy of an algebraic variety X with that of its hyperplane sections, and in the
second case we study the topology of a variety X admitting a (usually proper
and submersive) morphism ¢ : X — Y, using the topology of the fibres X,
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and more precisely in the submersive case, using the local systems R¥¢,Z
onY.

The Lefschetz theorem on hyperplane sections is proved using Morse theory
on affine varieties, and does not require any arguments from Hodge theory.
However, it does not yield the hard Lefschetz theorem, i.e. the Lefschetz de-
composition, which is the only ingredient needed (in an entirely formal way)
in the proof of Deligne’s theorem:

Theorem 0.1 The Leray spectral sequence of the rational cohomology of a
projective fibration degenerates at E.

Concretely, this result implies the following invariant cycles theorem for smooth
projective fibrations:

Theorem 0.2 If¢ : X — Y is a smooth projective fibration, then the restric-
tion map

HY (X, Q) — H'(X,. Q)
is surjective.

Here, H*(X,,Q)* C H*(X,.Q) denotes the subspace of classes invariant
under the monodromy action

p:m(Y,y)— AutHk(Xy. Q).

This puts important constraints on the families of projective varieties. However,
qualitatively speaking, it is not a very refined statement. Rather, it is Hodge the-
ory which yields the true global invariant cycles theorem, which imposes qual-
itative constraints on the monodromy representation associated to a projective
fibration. If ¢ : X — Y is a dominant morphism between smooth projective
varieties, and U C Y is the Zariski open (dense) subset of regular values of ¢,
then we have a smooth and proper fibration ¢ : Xy := ¢~ '(U) = U, sowe
have a monodromy representation

p:mU,y)— AutHk(X).,Q) for yeU.

Then, we have the following result.

Theorem 0.3 The restriction map
HYX,Q) —» HYX,,Q) for yeU-

is surjective. In particular, H*(X y, Q)* is a Hodge substructure of H*(X ,, Q).
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The main additional ingredient enabling us to deduce this theorem from the
preceding one is the existence of mixed Hodge structures on the cohomol-
ogy groups of a quasi-projective complex manifold, and the strictness of the
morphisms of mixed Hodge structures.

These results, which illustrate the qualitative influence of Hodge theory on
the topology of algebraic varieties, are the main object of the Part I of this
volume, which is devoted to topology. It also contains an exposition of Picard—
Lefschetz theory, which gives a precise description of the geometry of a
Lefschetz degeneration. If ¥ <& X is the inclusion of a smooth hyperplane
section, the vanishing cohomology H*(Y, Z)y.n is defined as the kernel of the
Gysin morphism

Je i H*(Y, Z) - H*™(X, Z).

Picard-Lefschetz theory shows that the vanishing cohomology is generated by
the vanishing cycles, which are classes of spheres contracting to a point when
Y degenerates to a nodal hypersurface. Another important consequence of this
study is the description of the local monodromy action (the Picard—Lefschetz
formula). Combined with the preceding result, it gives the irreducibility theo-
rem for the monodromy action on the vanishing cohomology for the universal
family of smooth hyperplane sections of a smooth projective variety X.

This result has numerous consequences, in particular in the study of algebraic
cycles; it is a key ingredient in Lefschetz’ proof of the Noether—Lefschetz
theorem, which says that the Picard group of a general surface ¥ of degree > 4
in P3 is generated by the class of the line bundle Ox(1). It also occurs in the
proof of the Green—Voisin theorem on the triviality of the Abel-Jacobi map for
general hypersurfaces of degree > 6 in P*. Using the Picard—Lefschetz formula
and the transitivity of the monodromy action on vanishing cycles, one can also
show that the monodromy group is very large; indeed, it tends to be equal to the
group of isomorphisms preserving the intersection form (see Beauville 1986b).
This has important restrictive consequences on the Hodge structures of general
hyperplane sections: apart from the applications mentioned above, Deligne
(1972) uses the monodromy group (combined with the notion of the Mumford
group of a Hodge structure) to show that the rational Hodge structure on the H?
of a general surface of degree > 5 in IP? is not a quotient of the Hodge structure
on the H? of an abelian variety. All these results illustrate the influence of
topology on Hodge theory.

The second part of this volume is devoted to the study of infinitesimal varia-
tions of Hodge structure for a family of smooth projective varieties ¢ : X — Y,
and its applications, especially those concerning the case of complete families
of hypersurfaces or complete intersections of a given variety X.



