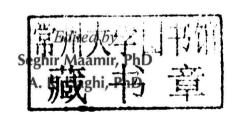

PHYSICO-CHEMICAL CHARACTERISTICS of MODIFIED MATERIALS

Performance Evaluation and Selection


Editors
Seghir Maamir, PhD | A. K. Haghi, PhD

MECHANICAL AND PHYSICO-CHEMICAL CHARACTERISTICS OF MODIFIED MATERIALS

Performance Evaluation and Selection

Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada Apple Academic Press Inc. 9 Spinnaker Way Waretown, NJ 08758 USA

©2016 by Apple Academic Press, Inc.

Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group

No claim to original U.S. Government works

International Standard Book Number-13: 978-1-77188-092-3 (Hardcover)

International Standard Book Number-13: 978-1-4987-1410-5 (eBook)

All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publisher or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

Library of Congress Control Number: 2015946544

Library and Archives Canada Cataloguing in Publication

Mechanical and physico-chemical characteristics of modified materials: performance evaluation and selection / edited by Seghir Maamir, PhD, A.K. Haghi, PhD.

Includes bibliographical references and index.

Issued in print and electronic formats.

ISBN 978-1-77188-092-3 (hardcover).--ISBN 978-1-4987-1410-5 (ebook)

- 1. Materials--Mechanical properties. 2. Materials--Testing.
- 3. Chemistry, Physical and theoretical. I. Haghi, A. K., author, editor II. Maamir, Seghir, editor

TA410.M43 2015

620.1'10287

C2015-905183-5

C2015-905222-X

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com and the CRC Press website at www.crcpress.com

Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall

MECHANICAL AND PHYSICO-CHEMICAL CHARACTERISTICS OF MODIFIED MATERIALS

Performance Evaluation and Selection

LIST OF CONTRIBUTORS

I. B. Abdrakhmanov

Institute of Organic Chemistry Ufa Scientific Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, 450054, Ufa, Russia

M. I. Abdullin

Bashkir State University, Ufa, 450077, Russia, E-mail: ProfAMI@yandex.ru

Kh. S. Abzaldinov

Kazan National Research Technological University, Kazan, Russia

D. S. Andreev

Volgograd State Architect-build University, Sebrykov Department, Russia

Vivek Asati

School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur-495009, Chhattisgarh, India

V. A. Babkin

Volgograd State Architect-build University, Sebrykov Department, Russia

A. A. Basyrov

Bashkir State University, Ufa, 450077, Russia, E-mail: ProfAMI@yandex.ru

Sanjay Kumar Bharti

School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur-495009, Chhattisgarh, India

Ali Fazlipur

Department of Mechanical Engineering, Imam Hossein Comprehensive University, Tehran, Iran; E-mail: fazlipourali1368@yahoo.com

A. B. Glazvrin

Bashkir State University, Ufa, 450077, Russia, E-mail: ProfAMI@yandex.ru

N. M. Gubaidullin

Bashkir State Agrarian University, 50 Let Oktyabrya, 21, 450001, Ufa, Russia, Tel: +7 (347) 235 55 60

A. K. Haghi

Department of Textile Engineering, University of Guilan, Rasht, Iran; E-mail: AKHaghi@yahoo.com

A. L. Iordanskii

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow, 119991 Russia

N. P. Ivanova

Assistant Professor (BSTU), Belarusian State Technological University, Sverdlova Str.13a, Minsk, Republic of Belarus

S. G. Karpova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., 119991 Moscow, Russia

viii List of Contributors

A. N. Kazakova

Ufa State Petroleum Technological University, Kosmonavtov Str. 1, 450062 Ufa, Russia; Tel: +(347) 2420854, E-mail: nocturne@mail.ru

Hossein Khodarahmi

Department of Mechanical Engineering, Imam Hossein Comprehensive University, Tehran, Iran

S. A. Krasko

Ufa State Petroleum Technological University, Kosmonavtov 1, 450062, Ufa, Russia, Tel: + 7 (347) 242 09 35. E-mail: ksa.85@mail.ru

E. T. Krut'ko

Professor (BSTU), Belarusian State Technological University, Sverdlova Str.13a, Minsk, Republic of Belarus

O. S. Kukovinets

Bashkir State University, Ufa, 450077, Russia, E-mail: ProfAMI@yandex.ru

L. E. Kuznetsova

Kazan National Research Technological University, Kazan, Russia

L. R. Latypova

Institute of Organic Chemistry Ufa Scientific Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, 450054, Ufa, Russia

N. M. Livanova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., 119991 Moscow, Russia; E-mail: livanova@sky.chph.ras.ru

Debarshi Kar Mahapatra

School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur–495009, India; Tel.: +91 7552–260027; Fax: +91 7752–260154; E-mail: mahapatradebarshi@gmail.com

N. N. Mikhaylova

Ufa State Petroleum Technological University, Kosmonavtov Str. 1, 450062 Ufa, Russia

B. Hadavi Moghadam

Department of Textile Engineering, University of Guilan, Rasht, Iran

D. A. Nguyen

Kazan National Research Technological University, 420015, Kazan, K. Marx str., 68, Russia

A. A. Ol'khov

Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow117997 Russia, E-mail: aolkhov72@yandex.ru

A. A. Popov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., 119991 Moscow, Russia

K. Yu. Prochukhan

Bashkir State University, Kommunisticheskaya ul., 19, Ufa, Respublika Bashkortostan, 450076, Russia

A. Yu. Prochukhan

Bashkir State University, Kommunisticheskaya ul., 19, Ufa, Respublika Bashkortostan, 450076, Russia

List of Contributors ix

N. R. Prokopchuk

Professor (BSTŪ), Corresponding Member of Belarus NAS, Belarusian State Technological University, Sverdlova Str.13a, Minsk, Republic of Belarus; E-mail: v.polonik@belstu.by

G. Z. Raskildina

Ufa State Petroleum Technological University, Kosmonavtov Str. 1, 450062 Ufa, Russia

Sh. M. Salikhov

Institute of Organic Chemistry Ufa Scientific Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, 450054, Ufa, Russia, Tel: +7 (347) 235 55 60. E-mail: Salikhov@anrb.ru

L. V. Spirikhin

Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Oktyabrya Avenue 71, 450054 Ufa, Russia

I. A. Starostina

Kazan National Research Technological University, 420015, Kazan, K. Marx str., 68, Russia

O. V. Stovanov

Kazan National Research Technological University, 420015, Kazan, K. Marx str., 68, Russia, E-mail: ov_stoyanov@mail.ru

D. V. Vezenov

Lehigh University, 27 Memorial Dr. W. Bethlehem, PA 18015, USA

A. F. Yarullina

Kazan National Research Technical University Named After A.N. Tupolev, Kazan, Russia; E-mail: aleksej-yarullin@yandex.ru, abzaldinov@mail.ru

G. E. Zaikov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin str., Moscow 119334; Kazan National Research Technological University, Kazan, Russia, E-mail: chembio@sky.chph.ras.ru

R. R. Zaripov

Bashkir State Agrarian University, 50 Let Oktyabrya, 21, 450001, Ufa, Russia, Tel: +7 (347) 235 55 60

T. A. Zharskava

Assistant Professor (BSTU), Belarusian State Technological University, Sverdlova Str.13a, Minsk, Republic of Belarus

M. V. Zhuravleva

PhD student (BSTU), Belarusian State Technological University, Sverdlova Str.13a, Minsk, Republic of Belarus

S. S. Zlotsky

Ufa State Petroleum Technological University, Kosmonavtov Str. 1, 450062 Ufa, Russia

LIST OF ABBREVIATIONS

2D two-dimensional 3D three-dimensional BBF best bin first

CAD computer-aided design
CCD charged coupled device
CM Chamfer matching
CMT correct-match rate

DCM directional chamfer matching

DLT direct linear transform
DOF degrees of freedom
DoG difference of Gaussians
DSM digital surface models

DTCWT dual-tree complex wavelet transforms

EBR edge-based regions

EBSD electron backscatter diffraction
ENMs electrospun nanofibrous membranes

ESM efficient second-order minimization method

FN false negatives FP false positives

GIS geographic information system

GLOH gradient location and orientation histogram

GSD ground sampling distance

HD Hausdorff distance

HOG histogram of oriented gradient

IBR intensity-extrema-based LMS least median of squares LoG Laplacian of Gaussian

LSCM laser scanning confocal microscope

Micro-CT micro computed tomography

MSER maximally stable extremal regions

xii List of Abbreviations

NN nearest neighbors

OD optic disk

PCA principal component analysis

POA pore open area

QMF quadrature mirror filter

SEM scanning electron microscopy
SIFT scale invariant feature transform

SSD sum of squared differences SURF speeded up robust features

SVD singular value decomposition of a matrix

TN true negatives
TP true positives
TPR true positive rate
VP vanishing point

WDST windowed discriminant spectral template

LIST OF SYMBOLS

3	porosity		
V_s	volume of sample		
V_{p}	pore volume		
$V_s \ V_p \ K_{KC}$	Kozeny-Carman predicted permeability, mD		
C	a constant		
d	median grain size diameter, microns		
P_n	projective space (n-dimensions)		
A_n R^{n+1}	affine Space (n-dimensions)		
R^{n+1}	vector space		
$X = [X_1, X_1,, X_{n+1}]^T$	homogeneous coordinates		
L	line in projective space		
π	plane in projective space		
S^2	2D sphere		
f(x) = Ax + b	affine transformations		
A	square matrix		
b	translation matrix		
$G(x, \sigma\%)$	Gaussian matrix		
C	Harris detector matrix		
λ	Eigen values		
σ %	natural scale		
H	Hessian matrix		
I	image		
I_{xx} , I_{yy} , I_{xy}	second order derivatives of image intensity		
I_{xx}, I_{yy}, I_{xy} $f(x, y)$	two-dimensional image function		
*	discrete convolution		
g(x, y)	filter kernel		
<i>x</i> – <i>y</i>	direction of a Guassian		
M(x, y)	image gradient magnitude		
Q(x, y)	image orientation		
$h_{r(l,m)}(k)$	Gradient magnitude		

C_k	orientation bin center
Δ_{k}	orientation bin width
$H(X,\sigma)$	Hessian matrix
$L_{xx}(X,\sigma)$	convolution of the Gaussian second order
$L_{xx}(x_1,0)$	derivative
H(C)	finite energy
	DTCWT coefficients
ρ_b	
α and β	scaling coefficients
g_k	individual feature in gist descriptor
$W_k(x, y)$	A spatial window
$m_{_{ij}}$	distance ground between pairs of features
	across the two images
c_{ij}	cost of matching these two points
$h_i(k), h_j(k)$	K-bin normalized histogram at pi and qj
H(A, B)	Hausdorff distance
$S = \{S_1 = \pm 1,, s_N\}$	binary sequences
$d_{CM}(U,V)$	chamfer distance between U and V
W(x,s)	a warping function
t_x, t_y \hat{s}	translations along x and y axis
	alignment parameter
$\varphi(x)$	direction term
λ	a weighting factor between location and orienta-
	tion terms
H(M,R)	Hausdorff distance between M and R (M and R
	are reference feature points and image feature
	points)
$\ \ \ $ $K^{th}_{a[A]}$	distance between two points
$K^{th}_{a[A}$	K^{th} ranked value of $d_B(a)$
$d_{B}(a)$	minimum distance value at point a to the point
	set B
$Q^{\prime h}_{b[B}$	K^{th} ranked value of the Euclidean distance set
$P^{th}_{a[A]}$	P^{th} ranked value of $Q^{th}_{b[B} a-b $
NE	size of the Euclidean distance
p*	true nearest neighbor
$M = [X, Y, Z]^T$	a 3D point
m%	homogeneous coordinate vector of vector m

List of Symbols xv

K	camera calibration	matrix

 $\begin{array}{ccc} e_1, \ e_2 & \text{epipoles} \\ l_1, \ l_2 & \text{epipolar lines} \\ U, \ V & \text{orthogonal 3} \end{array}$

U, V orthogonal 3 × 3 matrices Σ 3 × 3 diagonal matrix

R rotation matrix

probability that a sample correspondence

 Q_i rotation vector $P_i\%P_j\%$ camera rays

translation vector between camera centers

PREFACE

Understanding chemical and solid materials and their properties and behavior is fundamental to chemical design and engineering design and is a key application of chemicals and materials science. Written for all students of chemical science and mechanical engineering and materials science and design, this book describes the procedures for material selection and design in order to ensure that the most suitable materials for a given application are identified from the full range of materials, chemicals, and section shapes available.

Several case studies have been developed to further illustrate procedures and to add to the practical implementation of the text.

This new volume reviews recent academic and technological developments behind new engineered modified materials. The book is intended for researchers and those interested in future developments in mechanical and physico-chemical characteristics of modified materials. Several innovative applications for different materials are described in considerable detail with emphasis on the experimental data that supports these new applications. From fibers to chemical materials and from membranes to ceramics, creative modifications concerning new composites are described that could one day become commonplace. Never before has this much new information materials modification been packaged into one volume. In this book the world's leading experts describe their most recent research in their areas of expertise. The book will also be a useful tool for students and researchers, providing helpful insights into new evolving research areas in mechanical and physico-chemical characteristics of modified materials.