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17
DISCRETE CHOICE

17.1 INTRODUCTION

This is the first of three chapters that will survey models used in microeconometrics.
The analysis of individual choice that is the focus of this field is fundamentally about
modeling discrete outcomes such as purchase decisions, for example whether or not to
buy insurance, voting behavior, choice among a set of alternative brands, travel modes
or places to live, and responses to survey questions about the strength of preferences
or about self-assessed health or well-being. In these and any number of other cases,
the “dependent variable” is not a quantitative measure of some economic outcome,
but rather an indicator of whether or not some outcome occurred. It follows that the
regression methods we have used up to this point are largely inappropriate. We turn,
instead, to modeling probabilities and using econometric tools to make probabilistic
statements about the occurrence of these events. We will also examine models for
counts of occurrences. These are closer to familiar regression models, but are, once
again, about discrete outcomes of behavioral choices. As such, in this setting as well,
we will be modeling probabilities of events, rather than conditional mean functions.

The models that are analyzed in this and the next chapter are built on a platform of
preferences of decision makers. We take a random utility view of the choices that are
observed. The decision maker is faced with a situation or set of alternatives and reveals
something about their underlying preferences by the choice that he or she makes. The
choice(s) made will be affected by observable influences —this is, of course, the ultimate
objective of advertising—and by unobservable characteristics of the chooser. The blend
of these fundamental bases for individual choice is at the core of the broad range of
models that we will examine here.!

This chapter and Chapter 18 will describe four broad frameworks for analysis:

Binary Choice: The individual faces a pair of choices and makes that choice between
the two that provides the greater utility. Many such settings involve the choice between
taking an action and not taking that action, for example the decision whether or not to
purchase health insurance. In other cases, the decision might be between two distinctly
different choices, such as the decision whether to travel to and from work via public or
private transportation. In the binary choice case, the 0/1 outcome is merely a label for
“no/yes” —the numerical values are a mere convenience.

Multinomial Choice: The individual chooses among more than two choices, once
again, making the choice that provides the greatest utility. In the previous exam-
ple, private travel might involve a choice of being a driver or passenger while public
transport might involve a choice between bus and train. At one level, this is a minor
variation of the binary choice case —the latter is, of course, a special case of the former.
But, more elaborate models of multinomial choice allow a rich specification of con-
sumer preferences. In the multinomial case, the observed response is simply a label for
the selected choice; it might be a brand, the name of a place, or the type of travel mode.
Numerical assignments are not meaningful in this setting.

Ordered Choice: The individual reveals the strength of his or her preferences with
respect to a single outcome. Familiar cases involve survey questions about strength of
feelings about a particular commodity such as a movie, or self-assessments of social
outcomes such as health in general or self-assessed well-being. In the ordered choice

1See Greene and Hensher (2010, Chapter 4) for an historical perspective on this approach to model specifi-
cation.
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setting, opinions are given meaningful numeric values, usually 0, 1, ... , J for some up-
per limit, J. For example, opinions might be labelled 0, 1, 2, 3, 4 to indicate the strength
of preferences, for example, for a product, a movie, a candidate or a piece of legisla-
tion. But, in this context, the numerical values are only a ranking, not a quantitative
measure. Thus a “1” is greater than a “0” in a qualitative sense, but not by one unit,
and the difference between a “2” and a “1” is not the same as that between a “1” and
a“0”.

In these three cases, although the numerical outcomes are merely labels of some
nonquantitative outcome, the analysis will nonetheless have a regresson-style motiva-
tion. Throughout, the models will be based on the idea that observed “covariates” are
relevant in explaining the observed choices. For example, in the binary outcome “did
or did not purchase health insurance,” a conditioning model suggests that covariates
such as age, income, and family situation will help to explain the choice. This chapter
will describe a range of models that have been developed around these considerations.
We will also be interested in a fourth application of discrete outcome models:

Event Counts: The observed outcome is a count of the number of occurrences. In
many cases, this is similar to the preceding three settings in that the “dependent variable”
measures an individual choice, such as the number of visits to the physician or the
hospital, the number of derogatory reports in one’s credit history, or the number of
visits to a particular recreation site. In other cases, the event count might be the outcome
of some natural process, such as incidence of a disease in a population or the number
of defects per unit of time in a production process. In this setting, we will be doing a
more familiar sort of regression modeling. However, the models will still be constructed
specifically to accommodate the discrete nature of the observed response variable.

We will consider these four cases in turn. The four broad areas have many elements
in common; however, there are also substantive differences between the particular
models and analysis techniques used in each. This chapter will develop the first topic,
models for binary choices. In each section, we will begin with an overview of applications
and then present the single basic model that is the centerpiece of the methodology,
and, finally, examine some recently developed extensions of the model. This chapter
contains a very lengthy discussion of models for binary choices. This analysis is as long
as it is because, first, the models discussed are used throughout microeconometrics—
the central model of binary choice in this area is as ubiquitous as linear regression.
Second, all the econometric issues and features that are encountered in the other areas
will appear in the analysis of binary choice, where we can examine them in a fairly
straightforward fashion.

It will emerge that, at least in econometric terms, the models for multinomial and
ordered choice considered in Chapter 18 can be built from the two fundamental building
blocks, the model of random utility and the translation of that model into a description
of binary choices. There are relatively few new econometric issues that arise here. Chap-
ter 18 will be largely devoted to suggesting different approaches to modeling choices
among multiple alternatives and models for ordered choices. Once again, models of
preference scales, such as movie or product ratings, or self-assessments of health or well-
being, can be naturally built up from the fundamental model of random utility. Finally,
Chapter 18 will develop the well-known Poisson regression model for counts of events.
We will then extend the model to demonstrate some recent applications and innovations.

Chapters 17 and 18 are a lengthy but far from complete survey of topics in esti-
mating qualitative response (QR) models. None of these models can consistently be
estimated with linear regression methods. In most cases, the method of estimation is
maximum likelihood. Therefore, readers interested in the mechanics of estimation may
want to review the material in Appendices D and E before continuing. The various
properties of maximum likelihood estimators are discussed in Chapter 14. We shall
assume throughout these chapters that the necessary conditions behind the optimality
properties of maximum likelihood estimators are met and, therefore, we will not derive
or establish these properties specifically for the QR models. Detailed proofs for most of
these models can be found in surveys by Amemiya (1981), McFadden (1984), Maddala
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(1983), and Dhrymes (1984). Additional commentary on some of the issues of interest
in the contemporary literature is given by Manski and McFadden (1981) and Maddala
and Flores-Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) contain
numerous theoretical developments and applications. Greene (2008) and Hensher and

Greene (2010) provide, among many others, general surveys of discrete choice models
and methods.?

17.2 MODELS FOR BINARY OUTCOMES

For purposes of studying individual behavior, we will construct models that link the
decision or outcome to a set of factors, at least in the spirit of regression. Our approach
will be to analyze each of them in the general framework of probability models:

Prob(event j occurs) = Prob(Y = j) = F[relevant effects, parameters]. 17-1)

The study of qualitative choice focuses on appropriate specification, estimation, and
use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of two or more alternatives.

Example 17.1 Labor Force Participation Model
In Example 5.2 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal labor market taken from a full sample of 753 observations.
The semilog earnings equation is of the form

Inearnings = B1 + B2 age + Bz age® + B4 education + s kids + ¢,

where earnings is hourly wage times hours worked, education is measured in years of school-
ing, and kids is a binary variable which equals one if there are children under 18 in the house-
hold. What of the other 325 individuals? The underlying labor supply model described a
market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending
on whether it exceeded their own reservation wage. The first of these depends on, among
other things, education, while the second (we assume) depends on such variables as age,
the presence of children in the household, other sources of income (husband’s), and marginal
tax rates on labor income. The sample we used to fit the earnings equation contains data
on all these other variables. The models considered in this chapter would be appropriate for
modeling the outcome y = 1 if in the labor force, and 0 if not.

Models for explaining a binary (0/1) dependent variable are typically motivated
in two contexts. The labor force participation model in Example 17.1 describes a pro-
cess of individual choice between two alternatives in which the choice is influenced by
observable effects (children, tax rates) and unobservable aspects of the preferences of
the individual. The relationship between voting behavior and income is another exam-
ple. In other cases, the binary choice model arises in a setting in which the nature of
the observed data dictate the special treatment of a binary dependent variable model.
In these cases, the analyst is essentially interested in a regression-like model of the
sort considered in Chapters 2 through 7. With data on the variable of interest and a
set of covariates, they are interested in specifying a relationship between the former
and the latter, more or less along the lines of the models we have already studied.
For example, in a model of the demand for tickets for sporting events, in which the
variable of interest is number of tickets, it could happen that the observation consists
only of whether the sports facility was filled to capacity (demand greater than or equal
to capacity so Y = 1) or not (Y = 0). It will generally turn out that the models and
techniques used in both cases are the same. Nonetheless, it is useful to examine both
of them.

2There are dozens of book length surveys of discrete choice models. Two others that are heavily oriented to
application of the methods are Train (2003) and Hensher, Rose, and Greene (2005).
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17.21  RANDOM UTILITY MODELS FOR INDIVIDUAL CHOICE

An interpretation of data on individual choices is provided by the random utility model.
Let U, and Uj represent an individual’s utility of two choices. For example, U, might
be the utility of rental housing and Uj that of home ownership. The observed choice
between the two reveals which one provides the greater utility, but not the unobservable
utilities. Hence, the observed indicator equals 1 if U, > U, and 0if U, < U,. A common
formulation is the linear random utility model,

U =WBai+2/yis+¢e, and U, =WPByp+2,'yp + . 17-2)

In (17-2), the observable (measurable) vector of characteristics of the individual is
denoted w; this might include gender, age, income, and other demographics. The vectors
z, and z, denote features (attributes) of the two choices that might be choice specific.
In a voting context, for example, the attributes might be indicators of the competing
candidates’ positions on important issues. The random terms, &, and &, represent the
stochastic elements that are specific to and known only by the individual, but not by the
observer (analyst). To continue our voting example, ¢, might represent an intangible,
general “preference” for candidate a.

The completion of the model for the determination of the observed outcome
(choice) is the revelation of the ranking of the preferences by the choice the indi-
vidual makes. Thus, if we denote by Y = 1 the consumer’s choice of alternative a, we
infer from Y = 1 that U, > Up. Since the outcome is ultimately driven by the random
elements in the utility functions, we have

Prob[Y = 1|w, z,, 2] = Prob[U, > U]
= Prob[(WB, + 2. va +&a) — (X'Bp + 25"y, + €b) > 0| W, 24, 23]
= Prob[(W(Ba — Bb) + 2a'Va — 2b'Vb + €0 — €b) > 0| W, 24, Zp]
= Prob[x'g +¢ > 0]x],

where x’g collects all the observable elements of the difference of the two utility func-

tions and ¢ denotes the difference between the two random elements.

Example 17.2 Structural Equations for a Binary Choice Model
Nakosteen and Zimmer (1980) analyzed a model of migration based on the following struc-
ture:® For a given individual, the market wage that can be earned at the present location
is

Yp=WoB,+ &p.
Variables in the equation include age, sex, race, growth in employment, and growth in per

capita income. If the individual migrates to a new location, then his or her market wage would
be

Ve =W, Bn+ €em.
Migration entails costs that are related both to the individual and to the labor market:
C*=2a+u.
Costs of moving are related to whether the individual is self-employed and whether that

person recently changed his or her industry of employment. They migrate if the benefit
Ym — ¥Yp is greater than the cost, C. The net benefit of moving is

3 A number of other studies have also used variants of this basic formulation. Some important examples are
Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in Example
17.6 is another application. The now standard approach, in which “participation” equals one if wage offer
(x],Bw + &y) minus reservation wage (x, 8, + &) is positive, is also used in Fernandez and Rodriguez-Poo
(1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior
that give rise to binary choice models.
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M* =y, —y,—C*
= mﬂm—wpﬂp—z'u—+—(6m—5p—u)

=XB+e.

Beqause M* is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only y7 if the individual has
moved or y; if he or she has not. But we do observe that M = 1 for a move and M = 0 for
no move.

17.2.2 A LATENT REGRESSION MODEL

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression.
As an often-cited example, consider the decision to make a large purchase. The theory
states that the consumer makes a marginal benefit/marginal cost calculation based on
the utilities achieved by making the purchase and by not making the purchase and by
using the money for something else. We model the difference between benefit and cost
as an unobserved variable y* such that

Vv =x'B+e¢.

Note that this is the result of the “net utility” calculation in the previous section and in
Example 17.2. We assume that ¢ has mean zero and has either a standardized logistic
with variance 72/3 or a standard normal distribution with variance one or some other
specific distribution with known variance. We do not observe the net benefit of the
purchase (i.e., net utility), only whether it is made or not. Therefore, our observation is

=1 ify*>0,
y=0 ify* <O0. 17-3)

In this formulation, x’8 is called the index function. The assumption of known variance
of ¢ is an innocent normalization. Suppose the variance of ¢ is scaled by an unrestricted
parameter o2. The latent regression will be y* = x'8 + o¢. But, (y*/o) = X' (B/0) + ¢
is the same model with the same data. The observed data will be unchanged; y is still
0 or 1, depending only on the sign of y* not on its scale. This means that there is no
information about o in the sample data so o cannot be estimated. The parameter vector
B in this model is only “identified up to scale.” The assumption of zero for the threshold
in (17-3) is likewise innocent if the model contains a constant term (and not if it does
not).* Let a be the supposed nonzero threshold and o be the unknown constant term
and, for the present, x and B contain the rest of the index not including the constant
term. Then, the probability that y equals one is

Prob(y* > a|x) = Prob(e +x'B + & > a|x) = Prob[(@ —a) +X'B +¢ > 0x].

Because « is unknown, the difference (¢ — a) remains an unknown parameter. The end
result is that if the model contains a constant term, it is unchanged by the choice of the
threshold in (17-3). The choice of zero is a normalization with no significance. With the
two normalizations, then,

Prob(y* > 0|x) = Prob(e > —x'8 |x).

A remaining detail in the model is the choice of the specific distribution for e. We will
consider several. The overwhelming majority of applications are based either on the
normal or the logistic distribution. If the distribution is symmetric, as are the normal
and logistic, then

Prob(y* > 0|x) = Prob(e < X'8|x) = F(x'B), a7-4)

4Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.
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where F(t) is the cdf of the random variable, ¢. This provides an underlying structural
model for the probability.

17.2.3 FUNCTIONAL FORM AND REGRESSION

Consider the model of labor force participation suggested in Example 17.1. The respon-
dent either works or seeks work (¥ = 1) or does not (Y = 0) in the period in which our
survey is taken. We believe that a set of factors, such as age, marital status, education,
and work history, gathered in a vector x, explain the decision, so that

Prob(Y=1|x) = F(x, B)
Prob(Y=0|x) =1 — F(x, B). a7-5)

The set of parameters B reflects the impact of changes in x on the probability. For
example, among the factors that might interest us is the marginal effect of marital status
on the probability of labor force participation. The problem at this point is to devise a
suitable model for the right-hand side of the equation. One possibility is to retain the
familiar linear regression,

Fxx, B) =x8.

Because E[y|x] = 0[1— F(x, B)]+1[F(x, B)] = F(x, B), we can construct the regression
model,

<
Il

Ely|x]+y— E[y|x]
=x'B+e. (17-6)

The linear probability model has a number of shortcomings. A minor complication
arises because ¢ is heteroscedastic in a way that depends on 8. Because x'8 + ¢ must
equal O or 1, ¢ equals either —x’B or 1 —x’8, with probabilities 1 — F and F, respectively.
Thus, you can easily show that in this model,

Var[e | x] = x'B(1 — x'B). a7-7

We could manage this complication with an FGLS estimator in the fashion of Chap-
ter 9, though this only solves the estimation problem, not the theoretical one. A more
serious flaw is that without some ad hoc tinkering with the disturbances, we cannot be
assured that the predictions from this model will truly look like probabilities. We cannot
constrain x’B to the 0-1 interval. Such a model produces both nonsense probabilities
and negative variances. For these reasons, the linear probability model is becoming
less frequently used except as a basis for comparison to some other more appropriate
models.’

Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (17-4). For a given regressor vector, we would expect

lim Prob(Y=1|x)=1

x'f—+00

JimProb(¥ =1]x) =0. 17-8)

See Figure 17.1. In principle, any proper, continuous probability distribution defined
over the real line will suffice. The normal distribution has been used in many analyses,
giving rise to the probit model,

5The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model
at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we
may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting
estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least
squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear
probability model is applied by Caudill (1988), Heckman, and MaCurdy (1985), and Heckman and Snyder
(1997). An exchange on the usefulness of the approach is Angrist (2001) and Moffitt (2001). See Angrist and
Pischke (2009) for some applications.
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x'B
FIGURE 17.1 Model for a Probability.

Prob(Y=1|x) = ¢ (t)dt = d(x'B). 17-9)
—00
The function ®(¢) is a commonly used notation for the standard normal distribution
function. Partly because of its mathematical convenience, the logistic distribution,

exp(x'B)

Prob(Y =11% = I - cxpa )

= AXB). (17-10)
has also been used in many applications. We shall use the notation A(.) to indicate the
logistic cumulative distribution function. This model is called the logit model for reasons
we shall discuss in the next section. Both of these distributions have the familiar bell
shape of symmetric distributions. Other models which do not assume symmetry, such
as the Gumbel model,

Prob(Y = 1|x) = exp[— exp(—x'B)],
and complementary log log model,
Prob(Y =1|x) =1 — exp[—exp(x'B)],

have also been employed. Still other distributions have been suggested,® but the probit
and logit models are still the most common frameworks used in econometric applica-
tions.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a ¢ distribution with seven degrees of freedom.) Therefore, for intermediate
values of x’B (say, between —1.2 and +1.2), the two distributions tend to give similar
probabilities. The logistic distribution tends to give larger probabilities to Y = 1 when
x'B is extremely small (and smaller probabilities to Y = 1 when x'g is very large)
than the normal distribution. It is difficult to provide practical generalities on this basis,
however, as they would require knowledge of 8. We should expect different predictions
from the two models, however, if the sample contains (1) very few “responses” (Y’s
equal to 1) or very few “nonresponses” (Y’s equal to 0) and (2) very wide variation in
an important independent variable, particularly if (1) is also true. There are practical

6See, for example, Maddala (1983, pp. 27-32), Aldrich and Nelson (1984), and Greene (2001).
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reasons for favoring one or the other in some cases for mathematical convenience, but
it is difficult to justify the choice of one distribution or another on theoretical grounds.
Amemiya (1981) discusses a number of related issues, but as a general proposition, the
question is unresolved. In most applications, the choice between these two seems not to
make much difference. However, as seen in the following example, the symmetric and
asymmetric distributions can give substantively different results, and here, the guidance
on how to choose is unfortunately sparse.

The probability model is a regression:

Ely|x] = F(X'B).

Whatever distribution is used, it is important to note that the parameters of the model,
like those of any nonlinear regression model, are not necessarily the marginal effects
we are accustomed to analyzing. In general,

IE[yIx] [dF(X’ﬂ)
0x | dx'B)

where f(.) is the density function that corresponds to the cumulative distribution, F(.).
For the normal distribution, this result is

JE[y|x]

] x B = f(x'B) x B, 17-11)

realks d(x'B) x B, 17-12)
where ¢ (¢) is the standard normal density. For the logistic distribution,
dAX'B) exp(x'B)

dxB)  [1+expB) AXB[1 - AX'B)],

so, in the logit model,

JE[y|x]

2 = AWB)[1 - AXB)IB. 17-13)

It is obvious that these values will vary with the values of x. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the regressors and,
where necessary, other pertinent values. For convenience, it is worth noting that the
same scale factor applies to all the slopes in the model.

For computing marginal effects, one can evaluate the expressions at the sample
means of the data or evaluate the marginal effects at every observation and use the sam-
ple average of the individual marginal effects —this produces the average partial effects.
In large samples these generally give roughly the same answer (see Section 17.3.2). But
that is not so in small- or moderate-sized samples. Current practice favors averaging
the individual marginal effects when it is possible to do so.

Another complication for computing marginal effects in a binary choice model
arises because x will often include dummy variables—for example, a labor force par-
ticipation equation will often contain a dummy variable for marital status. Because the
derivative is with respect to a small change, it is not appropriate to apply (17-12) for the
effect of a change in a dummy variable, or a change of state. The appropriate marginal
effect for a binary independent variable, say, d, would be

Marginal effect = Prob[Y = 1 |X), d = 1] — Prob[Y = 1|X@).d =0],  (17-14)

where X(4), denotes the means of all the other variables in the model. Simply taking the
derivative with respect to the binary variable as if it were continuous provides an approx-
imation that is often surprisingly accurate. In Example 17.3, for the binary variable PSI,
the difference in the two probabilities for the probit modelis (0.5702 — 0.1057) = 0.4645,
whereas the derivative approximation reported in Table 17.1 is 0.468. Nonetheless, it
might be optimistic to rely on this outcome. We will revisit this computation in the
examples and discussion to follow.
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