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Birational geometry for nilpotent orbits

Yoshinori Namikawa

Abstract. The following topics are discussed:
(1) Basic facts and examples of resolutions for nilpotent orbit.
(2) Q-factorial terminalizations of nilpotent orbit closures and related birational

geometry.
(3) Poisson deformations of nilpotent orbit closures.

Contents

Introduction

Nilpotent orbits and symplectic singularities

2.1 Kostant-Kirillov form

2.2 Nilpotent orbits in a classical Lie algebra

2.3 Jacobson-Morozov resolution of O

2.4 Induced orbits

2.5 Example A

2.6 Example B

2.7 Example C

2.8 Example D

2.9 Crepant resolutions and Q-factorial terminalizations
Birational geometry of Q-factorial terminalizations
3.1 Parabolic subgroups and root systems

3.2 Parabolic subalgebras with a fixed Levi part
3.3 Brieskorn-Slodowy diagram

3.4 Nefconeof G/Q

3.5 Nef cones of X4,0+ and Xq,0/,0

3.6 Twists and flops

3.7 Main results

3.8 Movable cones and the W’-action

Poisson deformations of nilpotent orbits.

4.1 Poisson deformations and Q-factorial terminalizations
4.2 The period map

2010 Mathematics Subject Clasﬁiﬁcatian. Primary 14E30, 17B08, 17B63; Secondary 14J17, 14L17.
Key words and phrases. Birational geometry, Nilpotent orbits, Poisson deformations.

(=R e s lie) Bile) BN« I O]

10
12
13
14
15
17
17
18
20
24
24
25
27
30
31
31
34



2 Birational geometry for nilpotent orbits

1. Introduction

The aim of this paper is to give an account of the birational point of view on
nilpotent orbits in a complex simple Lie algebra. Let g be a complex simple Lie
algebra and G the adjoint group. An adjoint orbit O in g is called a nilpotent orbit if
O consists of nilpotent elements of g. The closure O of O is then an affine variety
with singularities. In general, O is not necessarily normal (see for example [15] in
this direction). In this paper we shall take its normalization O of O and consider
the birational geometry on its (partial) resolutions. Each variety O has symplectic
singularities. More precisely, the smooth locus O,, admits the Kostant-Kirillov
2-form w, which is d-closed and non-degenerate. Moreover, if we take a resolution
i:Y — O, then w extends to a regular 2-form on Y. A resolution w: Y — O is called
a crepant resolution if Ky = p*K5. The nilpotent cone N is defined to be the subset
of g which consists of all nilpotent elements of g. By definition N is a disjoint union
of all nilpotent orbits of g. There is a largest nilpotent orbit O, and N coincides with
its closure. Moreover, N is a normal variety. Let B be a Borel subgroup of G and let
T*(G/B) be the cotangent bundle of the flag variety G/B. By using the Killing form
of g, one can identify T*(G/B) with a vector bundle G x® [b, b] over G/B. Then there
is a natural map

v:G xB[bb]l =g

defined by [g, x] = Adg(x). The image of v coincides with N and v gives a resolution
of N ([25]). We call v the Springer resolution of N. Since T*(G/B) admits a canonical
symplectic 2-form and it coincides with the pull-back of the Kostant-Kirillov 2-form
on O,, the Springer resolution is a crepant resolution. One can generalize this
construction to a parabolic subgroup Q of G. Let us start with the cotangent bundle
T*(G/Q). Note that T*(G/Q) is identified with G x Un(q) where n(q) is the nil-radical
of q. In a similar way to the above, we have a map

v:T(G/Q) — g,

whose image is the closure of a nilpotent orbit O. In general, v is not birational onto
its image, but a generically finite projective morphism (see 2.6 for a non-birational
Springer map). When v gives a resolution of O, we call v the Springer resolution of
O. In this case, the Stein factorization

T(G6/Q B 00
gives a crepant resolution of O. B. Fu [7] proved the following.

Theorem ([7]). Let O be a nilpotent orbit of g and assume that O admits a crepant
resolution. Then it coincides with a Springer resolution. More exactly, there is a parabolic
subgroup Q of G such that v™ is the given crepant resolution.

However there still remain interesting problems. At first, there actually exists
a nilpotent orbit which has no crepant resolutions. Secondly, if O has a crepant
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resolution, it is not unique, that is, the choice of Q is not unique even up to conjugacy
class. Our purpose is to survey complete answers (cf. [18], [19], [21] and [8]) to
these problems.

A substitute for a crepant resolution is a Q-factorial terminalization. A birational
projective morphism i : Y — O is a Q-factorial terminalization if Y has only
Q-factorial terminal singularities and Ky = p*K. The existence of a Q-factorial
terminalization is established by Birkar, Cascini, Hacon and M“Kernan [2]. But, we
shall give here more concrete forms of Q-factorial terminalization. A hint is already
in the work of Lusztig and Spaltenstein [17]. They introduced the notion of an
induced orbit. Let us start with a parabolic subgroup Q of G and its Levi factor L(Q).
Let O’ C [(q) be a nilpotent orbit with respect to the adjoint L(Q)-action. Then one
can make an associated bundle G x? (n(q) + O’) and define a map

v:Gx?(n(q) +0") =g

by v([g,x]) = Adg(x). Since this is a G-equivariant closed map, its image is the
closure of a nilpotent orbit O of g. Then we say that O is induced from O’ and write
0= Indf( ¢)(O’). The map v is called the generalized Springer map. The generalized
Springer map v is a generically finite projective morphism. But if v is birational onto

its image, then the Stein factorization
G xQ(n(q)+(5’)v—n>C)—)(_)
gives a partial resolution of O. Now one can prove:
Theorem 2.6. Let O be a nilpotent orbit of a complex simple Lie algebra g. Then there are
a parabolic subalgebra q of g and a nilpotent orbit O of [(q) such that the following holds:
(1) O =Ind? (0.

((q )
(2) v™ gives a Q-factorial terminalization of O.

In order to look for other Q-factorial terminalizations of O, we introduce a flat
deformation of G x? (n(q) + O’). For simplicity we put [ := [(q) and let L be the
corresponding Levi subgroup. Let t(q) be the solvable radical of q and consider the
variety G x 9 (t(q) + O’). Its normalization X4 0 is isomorphic to G x? (v(q) + 0’).
Let £ be the center of [. In 3.3 we shall define a map

quo/ — ¢
whose central fiber X;,0/,0 is G x Q (n(q) + O’). This map factorizes as
Xq,00 23 Spec M(Xq,07, Ox, o) = &.

Put

Y[‘o/ = Spec F(Xq,o:, qu,o’ )
An important fact is that Y; o- depends only on [ and O’. Moreover its central fiber
Y(,0/,0 is isomorphic to O. Define

8(I) := {parabolic subalgebras q’ of g; I(q") =1}.



