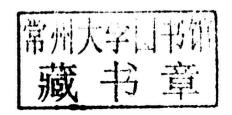
PRECISION FARMING

Soil Fertility and Productivity Aspects

K. R. Krishna, PhD

并加速加速


Apple Academic Press

CRC Press
Taylor & Francis Group

PRECISION FARMING

Soil Fertility and Productivity Aspects

K. R. Krishna, PhD

© 2013 by Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada

Apple Academic Press Inc. 9 Spinnaker Way, Waretown, NJ 08758 USA

Exclusive worldwide distribution by CRC Press, a Taylor & Francis Group

International Standard Book Number: 978-1-926895-44-4 (Hardback)

Printed in the United States of America on acid-free paper

Library of Congress Control Number: 2012951943

Library and Archives Canada Cataloguing in Publication

Krishna, K. R. (Kowligi R.)

Precision farming: soil fertility and productivity aspects/K.R. Krishna.

Includes bibliographical references and index.

ISBN 978-1-926895-44-4

1. Precision farming. 2. Soil fertility. 3. Soil productivity.

I. Title.

S494.5 P73K75 2013

631

C2012-906399-1

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The author, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without the written permission of the publisher.

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com

PRECISION FARMING

Soil Fertility and Productivity Aspects

About the Author

K. R. Krishna, PhD

K. R. Krishna received his PhD in agriculture from the University of Agricultural Sciences in Bangalore. He has been a cereals scientist in India and a visiting professor and research scholar at the Soil and Water Science Department at the University of Florida, Gainesville, USA. Dr. Krishna is a member of several professional organizations, including the International Society for Precision Agriculture, the American Society of Agronomony, the Soil Science Society of America, the Ecological Society of America, and the Indian Society of Agronomy.

List of Abbreviations

AE_N Agronomic efficiency of fertilizer-N

BMP Best management practice CEC Cation exchange capacity

DGPS Differential global positioning system EONR Economically optimum rates of N

EC Electrical conductivity
EMI Electromagnetic induction

FYM Farmyard manure

GIS Geographic information system
GPS Global positioning systems
INM Integrated nutrient management

LED Light emitting diode

NIR Near-infrared

NDVI Normalized difference vegetative index

NMR Nuclear magnetic resonance

PF Precision farming

RVI Reflectance vegetation index
SAR State agency recommendation
SSNM Site-specific nutrient management

SOC Soil organic carbon SOM Soil organic matter

SPAD Soil plant analysis development

STCR Soil test crop response
VRT Variable rate technology
WFM Whole farm management

Precision is an important concept that has induced, guided, and improved many aspects of human endeavor for ages. Historically, precision has been an important factor in agricultural evolution per se. Precision in planting dates and matching crops with seasons to derive maximum advantage from soils and precipitation patterns are perhaps the oldest aspects of agriculture. Farmers have been striving to achieve greater accuracy on these aspects of agricultural cropping since the Neolithic period. They continue to do so even today. There is no doubt that through the ages, precision as a concept has been imbibed into almost every technique and practice during crop production. Precision has been a key factor in selection of healthy seeds, seeding technique, fertile locations, types of manures, and moist zones. Precision has sometimes caused quantum changes in cropping pattern and productivity. Precision in matching soil fertility and its variations with crop species or its genotype with yield goals is a key aspect of agriculture in any part of the world. Precision is needed while selecting a crop genotype. The genotype should match the agro-environment, soils, season, grain yield goals, and profitability. Agricultural cropping trends and productivity, in particular, have depended on the extent of precision bestowed on farming procedures. For example, precise crop genotype, accurate supply of nutrients, and irrigation in time and space were major factors in improving crop productivity during first half of the 20th century. Today, precision techniques offer farmers the greatest opportunity to regulate soil nutrient dynamics, protect agro-environment and yet enhance crop productivity.

During recent years, a perceptibly greater degree of precision has been incorporated into almost all farming procedures. Soil fertility and manure supply trends, in particular, have received greater attention with regard to the extent of precision possible. The advent of computer models, simulations, and decision support systems have allowed us to direct exact quantities of seeds, fertilizers, water, and pesticides through the use of variable-rate technology. Actually, equipments such as computers, handheld sensors, and satellite-guided systems have remarkably enhanced precision during farming. Precision technique creates uniform soil fertility across a field. Grain/fruit and forage productivity too become uniform commensurately. Precision techniques often envisage use of slightly or markedly lower quantities of fertilizers and irrigation to achieve same levels of crop productivity. The reduction in fertilizer usage delays or totally avoids deterioration of soils, ground water, aquifers, and general agro-environment. Precision techniques also provide higher profits to farmers. Overall, reduction in use of natural resources, improved grain/forage yield, and extra profitability compared to farmer's traditional procedures hold the key to its rapid acceptance in most agricultural regions of the world.

During past decade, rapid improvements have occurred in precision techniques. Improvization of GPS-guided farm machinery, sensors, data capture, soil fertility mapping procedures, and GPS-guided variable-rate techniques have been marked.

xii Preface

The spread of precision techniques into different agricultural belts and evaluation of its advantages have received the greatest attention. Precision technique is most recent among the agronomic procedures exposed to farmers/researchers. Field evaluations across different continents suggest it could be a very popular and profitable technology in the near future.

This book, titled *Precision Farming*, is introductory. It begins with a discussion on historical aspects, provides brief descriptions on techniques, and enlists advantages as well as constraints that influence the adoption and spread of precision farming in different continents. Chapter 2 provides details on intricate instrumentation, their functioning, and advantages that accrue during precision farming. Chapter 3 forms the centerpiece of this book. It deals with the influence of precision farming approaches on soil fertility, nutrient dynamics, and productivity of various crops. The spread of precision farming methods into different geographic regions and profitability are discussed in detail in Chapter 4. A brief discussion about the future course of precision farming approaches appears in the last chapter.

This book on precision techniques is concise and provides valuable information on instrumentation and methodology. It encompasses lucid discussions about the impact of precision techniques on soil fertility, nutrient dynamics, and crop productivity. It is most useful to students, researchers, and professors involved in various aspects of agriculture.

- K. R. Krishna, PhD

Acknowledgments

Dr. Eric Lund and others of Veris Technologies, Salina, Kansas, USA, provided pictures of sensors that estimate soil pH, electrical conductivity, and nutrients. Pictures on precision techniques such as management strips, strip tillage, variable-rate supply of fertilizer and seeds, GPS-guided seeder, fertilizer mixing trucks, and fertilizer application systems were obtained from Mr. David Nelson, Nelson Farms Inc, Fort Dodge, Iowa, USA. Pictures of hand-held portable instruments that estimate photosynthetic activity were obtained from Mr. Micheal Larman, CID-BIO Science, Camas, Washington, USA. Pictures of hand-held sensors that measure Leaf-N and chlorophyll content, help in gauging N status of a crop, and in forecasting yield were derived from Konica-Minolta Sensing Inc, New Jersey, USA.

I wish to thank my wife Dr. Uma Krishna and son Mr. Sharath Kowligi.

Contents

	List of Abbreviations	ix
	Preface	xi
	Acknowledgementsx	iii
1.	Introduction	. 1
2.	Precision Farming: Methodology	29
3.	Precision Farming, Soil Nutrient Dynamics, and Crop Productivity	75
4.	Geographic and Economic Aspects of Precision Farming	19
5.	Precision Farming: Summary and Future Course	57
nde	10	61

1 Introduction

CONTENTS

1.1	Historical Aspects			
	1.1.1 Trends in Soil Fertility Management Practices	9		
1.2	Definitions for Precision Farming	. 12		
1.3	Major Components of Precision Farming or Site-specific Farming	. 16		
	1.3.1 Precision Farming: A Map and/or Sensor Based Technology	. 17		
	1.3.2 Global Information Systems (GIS)	. 17		
	1.3.3 Global Position Systems (GPS)	. 18		
1.4	Advantages that Accrue due to Precision Farming	. 20		
1.5	Constraints to Adoption of Precision Farming	. 22		
Key	words	. 23		
Refe	prences	23		

1.1 HISTORICAL ASPECTS

Precision means exactness or accuracy in performance of a particular task. In the present context, it refers to accuracy of various agricultural practices and farming per square that are carried out by farmers. Precision is actually a concept that got imbibed into agricultural endeavor of human beings, since pre-historic times. Precision also induced evolution of agricultural techniques and farming. Earliest of the steps towards precision could be seen in preferential seeding of a particular crop species in the vicinity of prehistoric human dwelling sites of early to late Neolithic period. Neolithic farmers gained by seeding and growing a precise crop species in those backyards of their dwellings. It overcame difficulty in tedious collection of grains from swamps or plains that had admixtures of all kinds of plant species. In this case, precision in terms of crop species and domestication allowed farmer greater quantity of harvests. It is interesting to note that since these early stages of agricultural history, precision as a concept has been quietly imbibed and utilized too, mainly to make farming easier and enhance productivity of land. Farmers devised procedures and manufactured implements that enhanced accuracy. Precise soil management using plough meant better nutrient and water management. Farmers introduced ploughing and line sowing during ancient period. Ploughing and line sowing is indeed a conspicuous effort to add greater

degree of precision into farming, in terms of planting geometry and density, efficient interception of light, as well as moisture and nutrient scavenging. It is a major event in the agricultural history that added precision to farms worldwide. Line sowing improved crop production compared to a field randomly broadcasted with seeds. Tillage and line sowing added precision to several other procedures like timing of interculture operations, top dressing, irrigation, pesticide application, and harvesting. During modern era (1820th century), precision got imbibed into agriculture through various improvements that farmers effected on to their implements, seeding procedures, irrigation devises, harvesting, and grain processing. During this period of history, farmers literally gained in efficiency and productivity by adding precision to farming procedures. Most glaring of the procedures introduced by farmers that added precision are precise planting dates to match with precipitation pattern and season. Even today, we strive hard to add precision into planting dates, seeding depth and plant population because it improves nutrient scavenging, moisture absorption and grain harvests significantly. Precise crop species and precise field to match fertility requirements of crops are other measures that improved productivity. Irrigation channels helped farmers in the supply of precise quantities of water at various stages of the crop development. During recent decades, there has been a steady improvement in precision aspects of implements, gadgets and procedures adopted in the field. Invention of fertilizer formulations improved accuracy further. Soil fertility could be mended accurately and sustained despite repeated cropping of the same field. Soil nutrients could be accurately replenished using various soil chemical analysis procedures and soil test crop response (STCR) studies. Automatic irrigation based on periodic soil moisture measurements and crops' need improved accuracy of crop production. Together, aspects like precise crop species/genotype, nutrient replenishment and irrigation were instrumental in enhancing crop yield. We should note that precise selection and genetic improvement of crop species has added to grain harvests significantly.

Historically, selection of genotypes that flowered and matured uniformly, produced non-dehiscent panicles/seeds of uniform traits have added to accuracy. Production of genotypes with uniform height and panicle development (semi-dwarfs) that aided efficient mechanical harvest is a glaring example that depicts gain in precision through crop breeding. Since mid 1900s, precision as a concept was imbibed as a matter of routine into almost all aspects of farming. Throughout past decades, almost every modification in traction machinery, types of coulters, their shape, size, seed drills, fertilizer drills, hoes, weeders, harvesters, right up to development of elaborate combine harvesters have all aimed at enhancing accuracy of specific tasks. Gadgets driven mechanically or through electrical power added further to precision of agricultural techniques. Electronic controls and timing too added precision to various farm operations.

Historically, most recent of the farming measures that seems to add precision into farming procedures, yet again and in significant amount, is the use of satellite-guided seeding, fertilizer application, irrigation, pesticide spray, harvesting, and yield monitoring. Satellite-guided procedures and computer-aided decision support systems are